Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1909.09884
Cited By
Uncertainty Quantification with Statistical Guarantees in End-to-End Autonomous Driving Control
21 September 2019
Rhiannon Michelmore
Matthew Wicker
Luca Laurenti
L. Cardelli
Y. Gal
Marta Z. Kwiatkowska
BDL
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Uncertainty Quantification with Statistical Guarantees in End-to-End Autonomous Driving Control"
29 / 29 papers shown
Title
SafePath: Conformal Prediction for Safe LLM-Based Autonomous Navigation
Achref Doula
M. Mühlhäuser
Alejandro Sánchez Guinea
24
0
0
14 May 2025
Probabilistic Interactive 3D Segmentation with Hierarchical Neural Processes
Jie Liu
Pan Zhou
Zehao Xiao
Jiayi Shen
Wenzhe Yin
J. Sonke
E. Gavves
34
0
0
03 May 2025
Model uncertainty quantification using feature confidence sets for outcome excursions
Junting Ren
Armin Schwartzman
56
0
0
28 Apr 2025
Support is All You Need for Certified VAE Training
Changming Xu
Debangshu Banerjee
Deepak Vasisht
Gagandeep Singh
AAML
44
0
0
16 Apr 2025
Pretraining with random noise for uncertainty calibration
Jeonghwan Cheon
Se-Bum Paik
OnRL
46
0
0
23 Dec 2024
Streamlining Prediction in Bayesian Deep Learning
Rui Li
Marcus Klasson
Arno Solin
Martin Trapp
UQCV
BDL
97
2
0
27 Nov 2024
Predicting Safety Misbehaviours in Autonomous Driving Systems using Uncertainty Quantification
Ruben Grewal
Paolo Tonella
Andrea Stocco
48
12
0
29 Apr 2024
Safety Implications of Explainable Artificial Intelligence in End-to-End Autonomous Driving
Shahin Atakishiyev
Mohammad Salameh
Randy Goebel
72
6
0
18 Mar 2024
Context-aware LLM-based Safe Control Against Latent Risks
Quang Khanh Luu
Xiyu Deng
Anh Van Ho
Yorie Nakahira
54
4
0
18 Mar 2024
Inferring the Langevin Equation with Uncertainty via Bayesian Neural Networks
Youngkyoung Bae
Seungwoong Ha
Hawoong Jeong
73
2
0
02 Feb 2024
Dealing with uncertainty: balancing exploration and exploitation in deep recurrent reinforcement learning
Valentina Zangirolami
Matteo Borrotti
31
6
0
12 Oct 2023
When to Trust AI: Advances and Challenges for Certification of Neural Networks
Marta Kwiatkowska
Xiyue Zhang
AAML
37
8
0
20 Sep 2023
Distributionally Robust Statistical Verification with Imprecise Neural Networks
Souradeep Dutta
Michele Caprio
Vivian Lin
Matthew Cleaveland
Kuk Jin Jang
I. Ruchkin
O. Sokolsky
Insup Lee
OOD
AAML
49
7
0
28 Aug 2023
SMARLA: A Safety Monitoring Approach for Deep Reinforcement Learning Agents
Amirhossein Zolfagharian
Manel Abdellatif
Lionel C. Briand
S. Ramesh
25
5
0
03 Aug 2023
Bayesian inference for data-efficient, explainable, and safe robotic motion planning: A review
Chengmin Zhou
Chao Wang
Haseeb Hassan
H. Shah
Bingding Huang
Pasi Fränti
3DV
38
3
0
16 Jul 2023
Law of Large Numbers for Bayesian two-layer Neural Network trained with Variational Inference
Arnaud Descours
Tom Huix
Arnaud Guillin
Manon Michel
Eric Moulines
Boris Nectoux
BDL
32
1
0
10 Jul 2023
Uncertainty Calibration for Counterfactual Propensity Estimation in Recommendation
Wenbo Hu
Xin Sun
Qiang liu
Wenbo Hu
Shu Wu
44
0
0
23 Mar 2023
Safer Autonomous Driving in a Stochastic, Partially-Observable Environment by Hierarchical Contingency Planning
Ugo Lecerf
Christelle Yemdji Tchassi
Pietro Michiardi
30
1
0
13 Apr 2022
Mind the Gap! A Study on the Transferability of Virtual vs Physical-world Testing of Autonomous Driving Systems
Andrea Stocco
Brian Pulfer
Paolo Tonella
27
68
0
21 Dec 2021
Statistical Perspectives on Reliability of Artificial Intelligence Systems
Yili Hong
J. Lian
Li Xu
Jie Min
Yueyao Wang
Laura J. Freeman
Xinwei Deng
30
30
0
09 Nov 2021
Accurate and Reliable Forecasting using Stochastic Differential Equations
Peng Cui
Zhijie Deng
Wenbo Hu
Jun Zhu
UQCV
38
1
0
28 Mar 2021
Efficient Deep Reinforcement Learning with Imitative Expert Priors for Autonomous Driving
Zhiyu Huang
Jingda Wu
Chen Lv
19
132
0
19 Mar 2021
Limits of Probabilistic Safety Guarantees when Considering Human Uncertainty
Richard Cheng
R. Murray
J. W. Burdick
39
6
0
05 Mar 2021
Make Sure You're Unsure: A Framework for Verifying Probabilistic Specifications
Leonard Berrada
Sumanth Dathathri
Krishnamurthy Dvijotham
Robert Stanforth
Rudy Bunel
J. Uesato
Sven Gowal
M. P. Kumar
AAML
OOD
30
17
0
18 Feb 2021
The Vulnerability of Semantic Segmentation Networks to Adversarial Attacks in Autonomous Driving: Enhancing Extensive Environment Sensing
Andreas Bär
Jonas Löhdefink
Nikhil Kapoor
Serin Varghese
Fabian Hüger
Peter Schlicht
Tim Fingscheidt
AAML
108
33
0
11 Jan 2021
A Review and Comparative Study on Probabilistic Object Detection in Autonomous Driving
Di Feng
Ali Harakeh
Steven Waslander
Klaus C. J. Dietmayer
AAML
UQCV
EDL
24
223
0
20 Nov 2020
Probabilistic Safety for Bayesian Neural Networks
Matthew Wicker
Luca Laurenti
A. Patané
Marta Z. Kwiatkowska
AAML
14
52
0
21 Apr 2020
Robustness of Bayesian Neural Networks to Gradient-Based Attacks
Ginevra Carbone
Matthew Wicker
Luca Laurenti
A. Patané
Luca Bortolussi
G. Sanguinetti
AAML
38
77
0
11 Feb 2020
Dropout as a Bayesian Approximation: Representing Model Uncertainty in Deep Learning
Y. Gal
Zoubin Ghahramani
UQCV
BDL
285
9,145
0
06 Jun 2015
1