ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1909.09712
  4. Cited By
Learning an Adaptive Learning Rate Schedule

Learning an Adaptive Learning Rate Schedule

20 September 2019
Zhen Xu
Andrew M. Dai
Jonas Kemp
Luke Metz
ArXivPDFHTML

Papers citing "Learning an Adaptive Learning Rate Schedule"

21 / 21 papers shown
Title
A Multi-Power Law for Loss Curve Prediction Across Learning Rate Schedules
A Multi-Power Law for Loss Curve Prediction Across Learning Rate Schedules
Kairong Luo
Haodong Wen
Shengding Hu
Zhenbo Sun
Zhiyuan Liu
Maosong Sun
Kaifeng Lyu
Wenguang Chen
CLL
67
2
0
17 Mar 2025
Narrowing the Focus: Learned Optimizers for Pretrained Models
Narrowing the Focus: Learned Optimizers for Pretrained Models
Gus Kristiansen
Mark Sandler
A. Zhmoginov
Nolan Miller
Anirudh Goyal
Jihwan Lee
Max Vladymyrov
39
1
0
17 Aug 2024
Neural Optimizer Equation, Decay Function, and Learning Rate Schedule
  Joint Evolution
Neural Optimizer Equation, Decay Function, and Learning Rate Schedule Joint Evolution
Brandon Morgan
Dean Frederick Hougen
ODL
25
0
0
10 Apr 2024
Dynamic Layer Tying for Parameter-Efficient Transformers
Dynamic Layer Tying for Parameter-Efficient Transformers
Tamir David Hay
Lior Wolf
33
3
0
23 Jan 2024
Generalisable Agents for Neural Network Optimisation
Generalisable Agents for Neural Network Optimisation
Kale-ab Tessera
C. Tilbury
Sasha Abramowitz
Ruan de Kock
Omayma Mahjoub
Benjamin Rosman
Sara Hooker
Arnu Pretorius
AI4CE
20
0
0
30 Nov 2023
Studying K-FAC Heuristics by Viewing Adam through a Second-Order Lens
Studying K-FAC Heuristics by Viewing Adam through a Second-Order Lens
Ross M. Clarke
José Miguel Hernández-Lobato
46
2
0
23 Oct 2023
Intelligent gradient amplification for deep neural networks
Intelligent gradient amplification for deep neural networks
S. Basodi
K. Pusuluri
Xueli Xiao
Yi Pan
ODL
21
1
0
29 May 2023
VeLO: Training Versatile Learned Optimizers by Scaling Up
VeLO: Training Versatile Learned Optimizers by Scaling Up
Luke Metz
James Harrison
C. Freeman
Amil Merchant
Lucas Beyer
...
Naman Agrawal
Ben Poole
Igor Mordatch
Adam Roberts
Jascha Narain Sohl-Dickstein
35
60
0
17 Nov 2022
Learning to Learn with Generative Models of Neural Network Checkpoints
Learning to Learn with Generative Models of Neural Network Checkpoints
William S. Peebles
Ilija Radosavovic
Tim Brooks
Alexei A. Efros
Jitendra Malik
UQCV
75
65
0
26 Sep 2022
A Closer Look at Learned Optimization: Stability, Robustness, and
  Inductive Biases
A Closer Look at Learned Optimization: Stability, Robustness, and Inductive Biases
James Harrison
Luke Metz
Jascha Narain Sohl-Dickstein
47
22
0
22 Sep 2022
Automated Dynamic Algorithm Configuration
Automated Dynamic Algorithm Configuration
Steven Adriaensen
André Biedenkapp
Gresa Shala
Noor H. Awad
Theresa Eimer
Marius Lindauer
Frank Hutter
32
36
0
27 May 2022
Practical tradeoffs between memory, compute, and performance in learned
  optimizers
Practical tradeoffs between memory, compute, and performance in learned optimizers
Luke Metz
C. Freeman
James Harrison
Niru Maheswaranathan
Jascha Narain Sohl-Dickstein
38
32
0
22 Mar 2022
A Simple Guard for Learned Optimizers
A Simple Guard for Learned Optimizers
Isabeau Prémont-Schwarz
Jaroslav Vítkru
Jan Feyereisl
49
7
0
28 Jan 2022
AutoBalance: Optimized Loss Functions for Imbalanced Data
AutoBalance: Optimized Loss Functions for Imbalanced Data
Mingchen Li
Xuechen Zhang
Christos Thrampoulidis
Jiasi Chen
Samet Oymak
19
67
0
04 Jan 2022
Efficient Meta Subspace Optimization
Efficient Meta Subspace Optimization
Yoni Choukroun
Michael Katz
25
1
0
28 Oct 2021
To Raise or Not To Raise: The Autonomous Learning Rate Question
To Raise or Not To Raise: The Autonomous Learning Rate Question
Xiaomeng Dong
Tao Tan
Michael Potter
Yun-Chan Tsai
Gaurav Kumar
V. R. Saripalli
Theodore Trafalis
OOD
13
2
0
16 Jun 2021
A Generalizable Approach to Learning Optimizers
A Generalizable Approach to Learning Optimizers
Diogo Almeida
Clemens Winter
Jie Tang
Wojciech Zaremba
AI4CE
19
29
0
02 Jun 2021
Reinforced Attention for Few-Shot Learning and Beyond
Reinforced Attention for Few-Shot Learning and Beyond
Jie Hong
Pengfei Fang
Weihao Li
Tong Zhang
Christian Simon
Mehrtash Harandi
L. Petersson
12
48
0
09 Apr 2021
Learning to Optimize: A Primer and A Benchmark
Learning to Optimize: A Primer and A Benchmark
Tianlong Chen
Xiaohan Chen
Wuyang Chen
Howard Heaton
Jialin Liu
Zhangyang Wang
W. Yin
40
225
0
23 Mar 2021
Learning the Step-size Policy for the Limited-Memory
  Broyden-Fletcher-Goldfarb-Shanno Algorithm
Learning the Step-size Policy for the Limited-Memory Broyden-Fletcher-Goldfarb-Shanno Algorithm
Lucas N. Egidio
A. Hansson
B. Wahlberg
16
12
0
03 Oct 2020
Tasks, stability, architecture, and compute: Training more effective
  learned optimizers, and using them to train themselves
Tasks, stability, architecture, and compute: Training more effective learned optimizers, and using them to train themselves
Luke Metz
Niru Maheswaranathan
C. Freeman
Ben Poole
Jascha Narain Sohl-Dickstein
33
62
0
23 Sep 2020
1