Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1909.09223
Cited By
InterpretML: A Unified Framework for Machine Learning Interpretability
19 September 2019
Harsha Nori
Samuel Jenkins
Paul Koch
R. Caruana
AI4CE
Re-assign community
ArXiv
PDF
HTML
Papers citing
"InterpretML: A Unified Framework for Machine Learning Interpretability"
8 / 8 papers shown
Title
Predicting Census Survey Response Rates With Parsimonious Additive Models and Structured Interactions
Shibal Ibrahim
P. Radchenko
E. Ben-David
Rahul Mazumder
214
2
0
24 Aug 2021
The Language Interpretability Tool: Extensible, Interactive Visualizations and Analysis for NLP Models
Ian Tenney
James Wexler
Jasmijn Bastings
Tolga Bolukbasi
Andy Coenen
...
Ellen Jiang
Mahima Pushkarna
Carey Radebaugh
Emily Reif
Ann Yuan
VLM
101
192
0
12 Aug 2020
An Interpretable Model with Globally Consistent Explanations for Credit Risk
Chaofan Chen
Kangcheng Lin
Cynthia Rudin
Yaron Shaposhnik
Sijia Wang
Tong Wang
FAtt
40
93
0
30 Nov 2018
Axiomatic Interpretability for Multiclass Additive Models
Xuezhou Zhang
S. Tan
Paul Koch
Yin Lou
Urszula Chajewska
R. Caruana
FAtt
AI4CE
23
3
0
22 Oct 2018
Distill-and-Compare: Auditing Black-Box Models Using Transparent Model Distillation
S. Tan
R. Caruana
Giles Hooker
Yin Lou
MLAU
101
184
0
17 Oct 2017
A Unified Approach to Interpreting Model Predictions
Scott M. Lundberg
Su-In Lee
FAtt
546
21,613
0
22 May 2017
XGBoost: A Scalable Tree Boosting System
Tianqi Chen
Carlos Guestrin
361
37,815
0
09 Mar 2016
"Why Should I Trust You?": Explaining the Predictions of Any Classifier
Marco Tulio Ribeiro
Sameer Singh
Carlos Guestrin
FAtt
FaML
587
16,828
0
16 Feb 2016
1