Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1909.08891
Cited By
Explaining Visual Models by Causal Attribution
19 September 2019
Álvaro Parafita
Jordi Vitrià
CML
FAtt
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Explaining Visual Models by Causal Attribution"
22 / 22 papers shown
Title
Counterfactual Explanations for Deep Learning-Based Traffic Forecasting
Rushan Wang
Yanan Xin
Yatao Zhang
Fernando Pérez-Cruz
Martin Raubal
AI4TS
24
3
0
01 May 2024
Causal Feature Selection for Responsible Machine Learning
Raha Moraffah
Paras Sheth
Saketh Vishnubhatla
Huan Liu
CML
27
2
0
05 Feb 2024
Causal Generative Explainers using Counterfactual Inference: A Case Study on the Morpho-MNIST Dataset
William Taylor-Melanson
Zahra Sadeghi
Stan Matwin
CML
19
5
0
21 Jan 2024
Provable Robust Saliency-based Explanations
Chao Chen
Chenghua Guo
Guixiang Ma
Ming Zeng
Xi Zhang
Sihong Xie
AAML
FAtt
20
0
0
28 Dec 2022
Deep Causal Learning for Robotic Intelligence
Y. Li
CML
30
5
0
23 Dec 2022
Causality-Aware Local Interpretable Model-Agnostic Explanations
Martina Cinquini
Riccardo Guidotti
CML
44
1
0
10 Dec 2022
Deep Causal Learning: Representation, Discovery and Inference
Zizhen Deng
Xiaolong Zheng
Hu Tian
D. Zeng
CML
BDL
28
11
0
07 Nov 2022
Deep Structural Causal Shape Models
Rajat Rasal
Daniel Coelho De Castro
Nick Pawlowski
Ben Glocker
3DV
MedIm
28
12
0
23 Aug 2022
Explanatory causal effects for model agnostic explanations
Jiuyong Li
Ha Xuan Tran
T. Le
Lin Liu
Kui Yu
Jixue Liu
CML
22
1
0
23 Jun 2022
Explaining Image Classifiers Using Contrastive Counterfactuals in Generative Latent Spaces
Kamran Alipour
Aditya Lahiri
Ehsan Adeli
Babak Salimi
M. Pazzani
CML
20
7
0
10 Jun 2022
Causality-based Neural Network Repair
Bing-Jie Sun
Jun Sun
Hong Long Pham
Jie Shi
19
78
0
20 Apr 2022
VACA: Design of Variational Graph Autoencoders for Interventional and Counterfactual Queries
Pablo Sánchez-Martín
Miriam Rateike
Isabel Valera
CML
BDL
23
14
0
27 Oct 2021
Unsupervised Causal Binary Concepts Discovery with VAE for Black-box Model Explanation
Thien Q. Tran
Kazuto Fukuchi
Youhei Akimoto
Jun Sakuma
CML
32
10
0
09 Sep 2021
Causal Learning for Socially Responsible AI
Lu Cheng
Ahmadreza Mosallanezhad
Paras Sheth
Huan Liu
71
13
0
25 Apr 2021
Explaining the Black-box Smoothly- A Counterfactual Approach
Junyu Chen
Yong Du
Yufan He
W. Paul Segars
Ye Li
MedIm
FAtt
63
83
0
11 Jan 2021
Socially Responsible AI Algorithms: Issues, Purposes, and Challenges
Lu Cheng
Kush R. Varshney
Huan Liu
FaML
20
145
0
01 Jan 2021
Generative causal explanations of black-box classifiers
Matthew R. O’Shaughnessy
Gregory H. Canal
Marissa Connor
Mark A. Davenport
Christopher Rozell
CML
17
73
0
24 Jun 2020
Causal Inference with Deep Causal Graphs
Álvaro Parafita
Jordi Vitrià
CML
6
10
0
15 Jun 2020
Deep Structural Causal Models for Tractable Counterfactual Inference
Nick Pawlowski
Daniel Coelho De Castro
Ben Glocker
CML
MedIm
25
229
0
11 Jun 2020
Adversarial Robustness on In- and Out-Distribution Improves Explainability
Maximilian Augustin
Alexander Meinke
Matthias Hein
OOD
62
98
0
20 Mar 2020
Causal Interpretability for Machine Learning -- Problems, Methods and Evaluation
Raha Moraffah
Mansooreh Karami
Ruocheng Guo
A. Raglin
Huan Liu
CML
ELM
XAI
18
212
0
09 Mar 2020
Preserving Causal Constraints in Counterfactual Explanations for Machine Learning Classifiers
Divyat Mahajan
Chenhao Tan
Amit Sharma
OOD
CML
17
205
0
06 Dec 2019
1