ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1909.08891
  4. Cited By
Explaining Visual Models by Causal Attribution

Explaining Visual Models by Causal Attribution

19 September 2019
Álvaro Parafita
Jordi Vitrià
    CML
    FAtt
ArXivPDFHTML

Papers citing "Explaining Visual Models by Causal Attribution"

22 / 22 papers shown
Title
Counterfactual Explanations for Deep Learning-Based Traffic Forecasting
Counterfactual Explanations for Deep Learning-Based Traffic Forecasting
Rushan Wang
Yanan Xin
Yatao Zhang
Fernando Pérez-Cruz
Martin Raubal
AI4TS
24
3
0
01 May 2024
Causal Feature Selection for Responsible Machine Learning
Causal Feature Selection for Responsible Machine Learning
Raha Moraffah
Paras Sheth
Saketh Vishnubhatla
Huan Liu
CML
27
2
0
05 Feb 2024
Causal Generative Explainers using Counterfactual Inference: A Case
  Study on the Morpho-MNIST Dataset
Causal Generative Explainers using Counterfactual Inference: A Case Study on the Morpho-MNIST Dataset
William Taylor-Melanson
Zahra Sadeghi
Stan Matwin
CML
19
5
0
21 Jan 2024
Provable Robust Saliency-based Explanations
Provable Robust Saliency-based Explanations
Chao Chen
Chenghua Guo
Guixiang Ma
Ming Zeng
Xi Zhang
Sihong Xie
AAML
FAtt
20
0
0
28 Dec 2022
Deep Causal Learning for Robotic Intelligence
Deep Causal Learning for Robotic Intelligence
Y. Li
CML
30
5
0
23 Dec 2022
Causality-Aware Local Interpretable Model-Agnostic Explanations
Causality-Aware Local Interpretable Model-Agnostic Explanations
Martina Cinquini
Riccardo Guidotti
CML
44
1
0
10 Dec 2022
Deep Causal Learning: Representation, Discovery and Inference
Deep Causal Learning: Representation, Discovery and Inference
Zizhen Deng
Xiaolong Zheng
Hu Tian
D. Zeng
CML
BDL
28
11
0
07 Nov 2022
Deep Structural Causal Shape Models
Deep Structural Causal Shape Models
Rajat Rasal
Daniel Coelho De Castro
Nick Pawlowski
Ben Glocker
3DV
MedIm
28
12
0
23 Aug 2022
Explanatory causal effects for model agnostic explanations
Explanatory causal effects for model agnostic explanations
Jiuyong Li
Ha Xuan Tran
T. Le
Lin Liu
Kui Yu
Jixue Liu
CML
22
1
0
23 Jun 2022
Explaining Image Classifiers Using Contrastive Counterfactuals in
  Generative Latent Spaces
Explaining Image Classifiers Using Contrastive Counterfactuals in Generative Latent Spaces
Kamran Alipour
Aditya Lahiri
Ehsan Adeli
Babak Salimi
M. Pazzani
CML
20
7
0
10 Jun 2022
Causality-based Neural Network Repair
Causality-based Neural Network Repair
Bing-Jie Sun
Jun Sun
Hong Long Pham
Jie Shi
19
78
0
20 Apr 2022
VACA: Design of Variational Graph Autoencoders for Interventional and
  Counterfactual Queries
VACA: Design of Variational Graph Autoencoders for Interventional and Counterfactual Queries
Pablo Sánchez-Martín
Miriam Rateike
Isabel Valera
CML
BDL
23
14
0
27 Oct 2021
Unsupervised Causal Binary Concepts Discovery with VAE for Black-box
  Model Explanation
Unsupervised Causal Binary Concepts Discovery with VAE for Black-box Model Explanation
Thien Q. Tran
Kazuto Fukuchi
Youhei Akimoto
Jun Sakuma
CML
32
10
0
09 Sep 2021
Causal Learning for Socially Responsible AI
Causal Learning for Socially Responsible AI
Lu Cheng
Ahmadreza Mosallanezhad
Paras Sheth
Huan Liu
71
13
0
25 Apr 2021
Explaining the Black-box Smoothly- A Counterfactual Approach
Explaining the Black-box Smoothly- A Counterfactual Approach
Junyu Chen
Yong Du
Yufan He
W. Paul Segars
Ye Li
MedIm
FAtt
63
83
0
11 Jan 2021
Socially Responsible AI Algorithms: Issues, Purposes, and Challenges
Socially Responsible AI Algorithms: Issues, Purposes, and Challenges
Lu Cheng
Kush R. Varshney
Huan Liu
FaML
20
145
0
01 Jan 2021
Generative causal explanations of black-box classifiers
Generative causal explanations of black-box classifiers
Matthew R. O’Shaughnessy
Gregory H. Canal
Marissa Connor
Mark A. Davenport
Christopher Rozell
CML
17
73
0
24 Jun 2020
Causal Inference with Deep Causal Graphs
Causal Inference with Deep Causal Graphs
Álvaro Parafita
Jordi Vitrià
CML
6
10
0
15 Jun 2020
Deep Structural Causal Models for Tractable Counterfactual Inference
Deep Structural Causal Models for Tractable Counterfactual Inference
Nick Pawlowski
Daniel Coelho De Castro
Ben Glocker
CML
MedIm
25
229
0
11 Jun 2020
Adversarial Robustness on In- and Out-Distribution Improves
  Explainability
Adversarial Robustness on In- and Out-Distribution Improves Explainability
Maximilian Augustin
Alexander Meinke
Matthias Hein
OOD
62
98
0
20 Mar 2020
Causal Interpretability for Machine Learning -- Problems, Methods and
  Evaluation
Causal Interpretability for Machine Learning -- Problems, Methods and Evaluation
Raha Moraffah
Mansooreh Karami
Ruocheng Guo
A. Raglin
Huan Liu
CML
ELM
XAI
18
212
0
09 Mar 2020
Preserving Causal Constraints in Counterfactual Explanations for Machine
  Learning Classifiers
Preserving Causal Constraints in Counterfactual Explanations for Machine Learning Classifiers
Divyat Mahajan
Chenhao Tan
Amit Sharma
OOD
CML
17
205
0
06 Dec 2019
1