ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1909.08540
  4. Cited By
No-Regret Learning in Unknown Games with Correlated Payoffs

No-Regret Learning in Unknown Games with Correlated Payoffs

18 September 2019
Pier Giuseppe Sessa
Ilija Bogunovic
Maryam Kamgarpour
Andreas Krause
    OffRL
ArXivPDFHTML

Papers citing "No-Regret Learning in Unknown Games with Correlated Payoffs"

10 / 10 papers shown
Title
Optimistic Games for Combinatorial Bayesian Optimization with Application to Protein Design
Optimistic Games for Combinatorial Bayesian Optimization with Application to Protein Design
Melis Ilayda Bal
Pier Giuseppe Sessa
Mojmír Mutný
Andreas Krause
32
0
0
27 Sep 2024
REDUCR: Robust Data Downsampling Using Class Priority Reweighting
REDUCR: Robust Data Downsampling Using Class Priority Reweighting
William Bankes
George Hughes
Ilija Bogunovic
Zi Wang
23
3
0
01 Dec 2023
Movement Penalized Bayesian Optimization with Application to Wind Energy
  Systems
Movement Penalized Bayesian Optimization with Application to Wind Energy Systems
Shyam Sundhar Ramesh
Pier Giuseppe Sessa
Andreas Krause
Ilija Bogunovic
16
12
0
14 Oct 2022
A Zeroth-Order Momentum Method for Risk-Averse Online Convex Games
A Zeroth-Order Momentum Method for Risk-Averse Online Convex Games
Zifan Wang
Yi Shen
Zachary I. Bell
Scott A. Nivison
Michael M. Zavlanos
Karl H. Johansson
22
5
0
06 Sep 2022
Distributionally Robust Bayesian Optimization with $\varphi$-divergences
Distributionally Robust Bayesian Optimization with φ\varphiφ-divergences
Hisham Husain
Vu-Linh Nguyen
Mingming Gong
40
13
0
04 Mar 2022
Contextual Games: Multi-Agent Learning with Side Information
Contextual Games: Multi-Agent Learning with Side Information
Pier Giuseppe Sessa
Ilija Bogunovic
Andreas Krause
Maryam Kamgarpour
41
21
0
13 Jul 2021
On Function Approximation in Reinforcement Learning: Optimism in the
  Face of Large State Spaces
On Function Approximation in Reinforcement Learning: Optimism in the Face of Large State Spaces
Zhuoran Yang
Chi Jin
Zhaoran Wang
Mengdi Wang
Michael I. Jordan
34
18
0
09 Nov 2020
Distributionally Robust Bayesian Optimization
Distributionally Robust Bayesian Optimization
Johannes Kirschner
Ilija Bogunovic
Stefanie Jegelka
Andreas Krause
22
77
0
20 Feb 2020
Truncated Variance Reduction: A Unified Approach to Bayesian
  Optimization and Level-Set Estimation
Truncated Variance Reduction: A Unified Approach to Bayesian Optimization and Level-Set Estimation
Ilija Bogunovic
Jonathan Scarlett
Andreas Krause
V. Cevher
69
89
0
24 Oct 2016
Kernel-based methods for bandit convex optimization
Kernel-based methods for bandit convex optimization
Sébastien Bubeck
Ronen Eldan
Y. Lee
78
163
0
11 Jul 2016
1