ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1909.08332
  4. Cited By
A Hierarchical Two-tier Approach to Hyper-parameter Optimization in
  Reinforcement Learning

A Hierarchical Two-tier Approach to Hyper-parameter Optimization in Reinforcement Learning

18 September 2019
Juan Cruz Barsce
J. Palombarini
E. Martínez
    OffRL
ArXivPDFHTML

Papers citing "A Hierarchical Two-tier Approach to Hyper-parameter Optimization in Reinforcement Learning"

12 / 12 papers shown
Title
Deep Dynamics Models for Learning Dexterous Manipulation
Deep Dynamics Models for Learning Dexterous Manipulation
Anusha Nagabandi
K. Konolige
Sergey Levine
Vikash Kumar
216
414
0
25 Sep 2019
Optuna: A Next-generation Hyperparameter Optimization Framework
Optuna: A Next-generation Hyperparameter Optimization Framework
Takuya Akiba
Shotaro Sano
Toshihiko Yanase
Takeru Ohta
Masanori Koyama
611
5,769
0
25 Jul 2019
Bayesian Optimization of Combinatorial Structures
Bayesian Optimization of Combinatorial Structures
Ricardo Baptista
Matthias Poloczek
71
136
0
22 Jun 2018
Towards Autonomous Reinforcement Learning: Automatic Setting of
  Hyper-parameters using Bayesian Optimization
Towards Autonomous Reinforcement Learning: Automatic Setting of Hyper-parameters using Bayesian Optimization
Juan Cruz Barsce
J. Palombarini
E. Martínez
GP
50
33
0
12 May 2018
Soft Actor-Critic: Off-Policy Maximum Entropy Deep Reinforcement
  Learning with a Stochastic Actor
Soft Actor-Critic: Off-Policy Maximum Entropy Deep Reinforcement Learning with a Stochastic Actor
Tuomas Haarnoja
Aurick Zhou
Pieter Abbeel
Sergey Levine
284
8,313
0
04 Jan 2018
Population Based Training of Neural Networks
Population Based Training of Neural Networks
Max Jaderberg
Valentin Dalibard
Simon Osindero
Wojciech M. Czarnecki
Jeff Donahue
...
Tim Green
Iain Dunning
Karen Simonyan
Chrisantha Fernando
Koray Kavukcuoglu
71
741
0
27 Nov 2017
Deep Reinforcement Learning that Matters
Deep Reinforcement Learning that Matters
Peter Henderson
Riashat Islam
Philip Bachman
Joelle Pineau
Doina Precup
David Meger
OffRL
116
1,946
0
19 Sep 2017
Reproducibility of Benchmarked Deep Reinforcement Learning Tasks for
  Continuous Control
Reproducibility of Benchmarked Deep Reinforcement Learning Tasks for Continuous Control
Riashat Islam
Peter Henderson
Maziar Gomrokchi
Doina Precup
BDL
OffRL
72
252
0
10 Aug 2017
Proximal Policy Optimization Algorithms
Proximal Policy Optimization Algorithms
John Schulman
Filip Wolski
Prafulla Dhariwal
Alec Radford
Oleg Klimov
OffRL
446
18,931
0
20 Jul 2017
Curiosity-driven Exploration by Self-supervised Prediction
Curiosity-driven Exploration by Self-supervised Prediction
Deepak Pathak
Pulkit Agrawal
Alexei A. Efros
Trevor Darrell
LRM
SSL
106
2,433
0
15 May 2017
Neural Architecture Search with Reinforcement Learning
Neural Architecture Search with Reinforcement Learning
Barret Zoph
Quoc V. Le
439
5,367
0
05 Nov 2016
Adam: A Method for Stochastic Optimization
Adam: A Method for Stochastic Optimization
Diederik P. Kingma
Jimmy Ba
ODL
1.6K
149,842
0
22 Dec 2014
1