ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1909.07622
  4. Cited By
Quantum algorithm for finding the negative curvature direction in
  non-convex optimization

Quantum algorithm for finding the negative curvature direction in non-convex optimization

17 September 2019
Kaining Zhang
Min-hsiu Hsieh
Liu Liu
Dacheng Tao
ArXivPDFHTML

Papers citing "Quantum algorithm for finding the negative curvature direction in non-convex optimization"

8 / 8 papers shown
Title
On Nonconvex Optimization for Machine Learning: Gradients,
  Stochasticity, and Saddle Points
On Nonconvex Optimization for Machine Learning: Gradients, Stochasticity, and Saddle Points
Chi Jin
Praneeth Netrapalli
Rong Ge
Sham Kakade
Michael I. Jordan
69
61
0
13 Feb 2019
Gradient Descent Happens in a Tiny Subspace
Gradient Descent Happens in a Tiny Subspace
Guy Gur-Ari
Daniel A. Roberts
Ethan Dyer
66
233
0
12 Dec 2018
How to Escape Saddle Points Efficiently
How to Escape Saddle Points Efficiently
Chi Jin
Rong Ge
Praneeth Netrapalli
Sham Kakade
Michael I. Jordan
ODL
193
835
0
02 Mar 2017
Finding Approximate Local Minima Faster than Gradient Descent
Finding Approximate Local Minima Faster than Gradient Descent
Naman Agarwal
Zeyuan Allen-Zhu
Brian Bullins
Elad Hazan
Tengyu Ma
76
83
0
03 Nov 2016
Escaping From Saddle Points --- Online Stochastic Gradient for Tensor
  Decomposition
Escaping From Saddle Points --- Online Stochastic Gradient for Tensor Decomposition
Rong Ge
Furong Huang
Chi Jin
Yang Yuan
132
1,058
0
06 Mar 2015
The Loss Surfaces of Multilayer Networks
The Loss Surfaces of Multilayer Networks
A. Choromańska
Mikael Henaff
Michaël Mathieu
Gerard Ben Arous
Yann LeCun
ODL
249
1,196
0
30 Nov 2014
Identifying and attacking the saddle point problem in high-dimensional
  non-convex optimization
Identifying and attacking the saddle point problem in high-dimensional non-convex optimization
Yann N. Dauphin
Razvan Pascanu
Çağlar Gülçehre
Kyunghyun Cho
Surya Ganguli
Yoshua Bengio
ODL
121
1,383
0
10 Jun 2014
Quantum support vector machine for big data classification
Quantum support vector machine for big data classification
Patrick Rebentrost
Masoud Mohseni
S. Lloyd
73
600
0
01 Jul 2013
1