ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1909.07082
  4. Cited By
Towards a Rigorous Evaluation of XAI Methods on Time Series

Towards a Rigorous Evaluation of XAI Methods on Time Series

16 September 2019
U. Schlegel
Hiba Arnout
Mennatallah El-Assady
Daniela Oelke
Daniel A. Keim
    XAI
    AI4TS
ArXivPDFHTML

Papers citing "Towards a Rigorous Evaluation of XAI Methods on Time Series"

17 / 17 papers shown
Title
Evaluating Simplification Algorithms for Interpretability of Time Series Classification
Evaluating Simplification Algorithms for Interpretability of Time Series Classification
Felix Marti-Perez
Brigt Håvardstun
Cèsar Ferri
Carlos Monserrat
Jan Arne Telle
AI4TS
23
0
0
13 May 2025
Implet: A Post-hoc Subsequence Explainer for Time Series Models
Implet: A Post-hoc Subsequence Explainer for Time Series Models
Fanyu Meng
Ziwen Kan
Shahbaz Rezaei
Z. Kong
Xin Chen
Xin Liu
AI4TS
24
0
0
13 May 2025
Probabilistic Stability Guarantees for Feature Attributions
Probabilistic Stability Guarantees for Feature Attributions
Helen Jin
Anton Xue
Weiqiu You
Surbhi Goel
Eric Wong
27
0
0
18 Apr 2025
Class-Dependent Perturbation Effects in Evaluating Time Series Attributions
Class-Dependent Perturbation Effects in Evaluating Time Series Attributions
Gregor Baer
Isel Grau
Chao Zhang
Pieter Van Gorp
AAML
53
0
0
24 Feb 2025
Interpreting Outliers in Time Series Data through Decoding Autoencoder
Interpreting Outliers in Time Series Data through Decoding Autoencoder
Patrick Knab
Sascha Marton
Christian Bartelt
Robert Fuder
29
1
0
03 Sep 2024
Explanation Space: A New Perspective into Time Series Interpretability
Explanation Space: A New Perspective into Time Series Interpretability
Shahbaz Rezaei
Xin Liu
AI4TS
34
1
0
02 Sep 2024
ShapG: new feature importance method based on the Shapley value
ShapG: new feature importance method based on the Shapley value
Chi Zhao
Jing Liu
Elena Parilina
FAtt
137
4
0
29 Jun 2024
Explaining Exchange Rate Forecasts with Macroeconomic Fundamentals Using
  Interpretive Machine Learning
Explaining Exchange Rate Forecasts with Macroeconomic Fundamentals Using Interpretive Machine Learning
Davood Pirayesh Neghab
Mucahit Cevik
M. Wahab
29
3
0
23 Mar 2023
Explainable AI for Time Series via Virtual Inspection Layers
Explainable AI for Time Series via Virtual Inspection Layers
Johanna Vielhaben
Sebastian Lapuschkin
G. Montavon
Wojciech Samek
XAI
AI4TS
18
25
0
11 Mar 2023
Evaluating Feature Attribution Methods for Electrocardiogram
Evaluating Feature Attribution Methods for Electrocardiogram
J. Suh
Jimyeong Kim
Euna Jung
Wonjong Rhee
FAtt
17
2
0
23 Nov 2022
Explainable AI for tailored electricity consumption feedback -- an
  experimental evaluation of visualizations
Explainable AI for tailored electricity consumption feedback -- an experimental evaluation of visualizations
Jacqueline Wastensteiner
T. Weiß
Felix Haag
K. Hopf
25
11
0
24 Aug 2022
MTV: Visual Analytics for Detecting, Investigating, and Annotating
  Anomalies in Multivariate Time Series
MTV: Visual Analytics for Detecting, Investigating, and Annotating Anomalies in Multivariate Time Series
Dongyu Liu
Sarah Alnegheimish
Alexandra Zytek
K. Veeramachaneni
AI4TS
21
20
0
10 Dec 2021
A Survey on AI Assurance
A Survey on AI Assurance
Feras A. Batarseh
Laura J. Freeman
29
65
0
15 Nov 2021
Collective eXplainable AI: Explaining Cooperative Strategies and Agent
  Contribution in Multiagent Reinforcement Learning with Shapley Values
Collective eXplainable AI: Explaining Cooperative Strategies and Agent Contribution in Multiagent Reinforcement Learning with Shapley Values
Alexandre Heuillet
Fabien Couthouis
Natalia Díaz Rodríguez
21
57
0
04 Oct 2021
XAI Methods for Neural Time Series Classification: A Brief Review
XAI Methods for Neural Time Series Classification: A Brief Review
Ilija vSimić
Vedran Sabol
Eduardo E. Veas
BDL
AI4TS
27
13
0
18 Aug 2021
Beyond Expertise and Roles: A Framework to Characterize the Stakeholders
  of Interpretable Machine Learning and their Needs
Beyond Expertise and Roles: A Framework to Characterize the Stakeholders of Interpretable Machine Learning and their Needs
Harini Suresh
Steven R. Gomez
K. Nam
Arvind Satyanarayan
34
126
0
24 Jan 2021
Instance-based Counterfactual Explanations for Time Series
  Classification
Instance-based Counterfactual Explanations for Time Series Classification
Eoin Delaney
Derek Greene
Mark T. Keane
CML
AI4TS
19
89
0
28 Sep 2020
1