ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1909.06092
  4. Cited By
A General Framework for Implicit and Explicit Debiasing of
  Distributional Word Vector Spaces

A General Framework for Implicit and Explicit Debiasing of Distributional Word Vector Spaces

13 September 2019
Anne Lauscher
Goran Glavaš
Simone Paolo Ponzetto
Ivan Vulić
ArXivPDFHTML

Papers citing "A General Framework for Implicit and Explicit Debiasing of Distributional Word Vector Spaces"

27 / 27 papers shown
Title
Are We Consistently Biased? Multidimensional Analysis of Biases in
  Distributional Word Vectors
Are We Consistently Biased? Multidimensional Analysis of Biases in Distributional Word Vectors
Anne Lauscher
Goran Glavaš
65
55
0
26 Apr 2019
Gender Bias in Contextualized Word Embeddings
Gender Bias in Contextualized Word Embeddings
Jieyu Zhao
Tianlu Wang
Mark Yatskar
Ryan Cotterell
Vicente Ordonez
Kai-Wei Chang
FaML
115
419
0
05 Apr 2019
Black is to Criminal as Caucasian is to Police: Detecting and Removing
  Multiclass Bias in Word Embeddings
Black is to Criminal as Caucasian is to Police: Detecting and Removing Multiclass Bias in Word Embeddings
Thomas Manzini
Y. Lim
Yulia Tsvetkov
A. Black
FaML
83
307
0
03 Apr 2019
Lipstick on a Pig: Debiasing Methods Cover up Systematic Gender Biases
  in Word Embeddings But do not Remove Them
Lipstick on a Pig: Debiasing Methods Cover up Systematic Gender Biases in Word Embeddings But do not Remove Them
Hila Gonen
Yoav Goldberg
100
571
0
09 Mar 2019
How to (Properly) Evaluate Cross-Lingual Word Embeddings: On Strong
  Baselines, Comparative Analyses, and Some Misconceptions
How to (Properly) Evaluate Cross-Lingual Word Embeddings: On Strong Baselines, Comparative Analyses, and Some Misconceptions
Goran Glavaš
Robert Litschko
Sebastian Ruder
Ivan Vulić
ELM
62
183
0
01 Feb 2019
Attenuating Bias in Word Vectors
Attenuating Bias in Word Vectors
Sunipa Dev
J. M. Phillips
FaML
70
151
0
23 Jan 2019
Adversarial Propagation and Zero-Shot Cross-Lingual Transfer of Word
  Vector Specialization
Adversarial Propagation and Zero-Shot Cross-Lingual Transfer of Word Vector Specialization
Edoardo Ponti
Ivan Vulić
Goran Glavaš
N. Mrksic
Anna Korhonen
VLM
52
47
0
11 Sep 2018
Gromov-Wasserstein Alignment of Word Embedding Spaces
Gromov-Wasserstein Alignment of Word Embedding Spaces
David Alvarez-Melis
Tommi Jaakkola
OT
54
328
0
31 Aug 2018
Learning Gender-Neutral Word Embeddings
Learning Gender-Neutral Word Embeddings
Jieyu Zhao
Yichao Zhou
Zeyu Li
Wei Wang
Kai-Wei Chang
FaML
94
412
0
29 Aug 2018
Reducing Gender Bias in Abusive Language Detection
Reducing Gender Bias in Abusive Language Detection
Ji Ho Park
Jamin Shin
Pascale Fung
FaML
51
340
0
22 Aug 2018
A robust self-learning method for fully unsupervised cross-lingual
  mappings of word embeddings
A robust self-learning method for fully unsupervised cross-lingual mappings of word embeddings
Mikel Artetxe
Gorka Labaka
Eneko Agirre
SSL
65
590
0
16 May 2018
Post-Specialisation: Retrofitting Vectors of Words Unseen in Lexical
  Resources
Post-Specialisation: Retrofitting Vectors of Words Unseen in Lexical Resources
Ivan Vulić
Goran Glavaš
N. Mrksic
Anna Korhonen
72
44
0
08 May 2018
Gender Bias in Coreference Resolution
Gender Bias in Coreference Resolution
Rachel Rudinger
Jason Naradowsky
Brian Leonard
Benjamin Van Durme
63
641
0
25 Apr 2018
Gender Bias in Coreference Resolution: Evaluation and Debiasing Methods
Gender Bias in Coreference Resolution: Evaluation and Debiasing Methods
Jieyu Zhao
Tianlu Wang
Mark Yatskar
Vicente Ordonez
Kai-Wei Chang
117
933
0
18 Apr 2018
Deep contextualized word representations
Deep contextualized word representations
Matthew E. Peters
Mark Neumann
Mohit Iyyer
Matt Gardner
Christopher Clark
Kenton Lee
Luke Zettlemoyer
NAI
206
11,549
0
15 Feb 2018
Non-Adversarial Unsupervised Word Translation
Non-Adversarial Unsupervised Word Translation
Yedid Hoshen
Lior Wolf
63
119
0
18 Jan 2018
Word Embeddings Quantify 100 Years of Gender and Ethnic Stereotypes
Word Embeddings Quantify 100 Years of Gender and Ethnic Stereotypes
Nikhil Garg
L. Schiebinger
Dan Jurafsky
James Zou
AI4TS
69
963
0
22 Nov 2017
Word Translation Without Parallel Data
Word Translation Without Parallel Data
Alexis Conneau
Guillaume Lample
MarcÁurelio Ranzato
Ludovic Denoyer
Hervé Jégou
287
1,657
0
11 Oct 2017
Men Also Like Shopping: Reducing Gender Bias Amplification using
  Corpus-level Constraints
Men Also Like Shopping: Reducing Gender Bias Amplification using Corpus-level Constraints
Jieyu Zhao
Tianlu Wang
Mark Yatskar
Vicente Ordonez
Kai-Wei Chang
FaML
90
970
0
29 Jul 2017
A Survey Of Cross-lingual Word Embedding Models
A Survey Of Cross-lingual Word Embedding Models
Sebastian Ruder
Ivan Vulić
Anders Søgaard
82
531
0
15 Jun 2017
Semantic Specialisation of Distributional Word Vector Spaces using
  Monolingual and Cross-Lingual Constraints
Semantic Specialisation of Distributional Word Vector Spaces using Monolingual and Cross-Lingual Constraints
N. Mrksic
Ivan Vulić
Diarmuid Ó Séaghdha
Ira Leviant
Roi Reichart
Milica Gasic
Anna Korhonen
S. Young
100
224
0
01 Jun 2017
Offline bilingual word vectors, orthogonal transformations and the
  inverted softmax
Offline bilingual word vectors, orthogonal transformations and the inverted softmax
Samuel L. Smith
David H. P. Turban
Steven Hamblin
Nils Y. Hammerla
OffRL
63
536
0
13 Feb 2017
Semantics derived automatically from language corpora contain human-like
  biases
Semantics derived automatically from language corpora contain human-like biases
Aylin Caliskan
J. Bryson
Arvind Narayanan
213
2,667
0
25 Aug 2016
Man is to Computer Programmer as Woman is to Homemaker? Debiasing Word
  Embeddings
Man is to Computer Programmer as Woman is to Homemaker? Debiasing Word Embeddings
Tolga Bolukbasi
Kai-Wei Chang
James Zou
Venkatesh Saligrama
Adam Kalai
CVBM
FaML
110
3,135
0
21 Jul 2016
Enriching Word Vectors with Subword Information
Enriching Word Vectors with Subword Information
Piotr Bojanowski
Edouard Grave
Armand Joulin
Tomas Mikolov
NAI
SSL
VLM
229
9,966
0
15 Jul 2016
SimLex-999: Evaluating Semantic Models with (Genuine) Similarity
  Estimation
SimLex-999: Evaluating Semantic Models with (Genuine) Similarity Estimation
Felix Hill
Roi Reichart
Anna Korhonen
101
1,303
0
15 Aug 2014
Distributed Representations of Words and Phrases and their
  Compositionality
Distributed Representations of Words and Phrases and their Compositionality
Tomas Mikolov
Ilya Sutskever
Kai Chen
G. Corrado
J. Dean
NAI
OCL
394
33,521
0
16 Oct 2013
1