ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1909.06030
  4. Cited By
Evaluating and Boosting Uncertainty Quantification in Classification

Evaluating and Boosting Uncertainty Quantification in Classification

13 September 2019
Xiaoyang Huang
Jiancheng Yang
Linguo Li
Haoran Deng
Bingbing Ni
Yi Tian Xu
ArXivPDFHTML

Papers citing "Evaluating and Boosting Uncertainty Quantification in Classification"

5 / 5 papers shown
Title
Spatial-Temporal-Fusion BNN: Variational Bayesian Feature Layer
Spatial-Temporal-Fusion BNN: Variational Bayesian Feature Layer
Shiye Lei
Zhuozhuo Tu
Leszek Rutkowski
Feng Zhou
Li Shen
Fengxiang He
Dacheng Tao
BDL
23
2
0
12 Dec 2021
A Survey of Uncertainty in Deep Neural Networks
A Survey of Uncertainty in Deep Neural Networks
J. Gawlikowski
Cedrique Rovile Njieutcheu Tassi
Mohsin Ali
Jongseo Lee
Matthias Humt
...
R. Roscher
Muhammad Shahzad
Wen Yang
R. Bamler
Xiaoxiang Zhu
BDL
UQCV
OOD
61
1,111
0
07 Jul 2021
Reinventing 2D Convolutions for 3D Images
Reinventing 2D Convolutions for 3D Images
Jiancheng Yang
Xiaoyang Huang
Yi He
Jingwei Xu
Canqian Yang
Guozheng Xu
Bingbing Ni
21
11
0
24 Nov 2019
Simple and Scalable Predictive Uncertainty Estimation using Deep
  Ensembles
Simple and Scalable Predictive Uncertainty Estimation using Deep Ensembles
Balaji Lakshminarayanan
Alexander Pritzel
Charles Blundell
UQCV
BDL
276
5,683
0
05 Dec 2016
Dropout as a Bayesian Approximation: Representing Model Uncertainty in
  Deep Learning
Dropout as a Bayesian Approximation: Representing Model Uncertainty in Deep Learning
Y. Gal
Zoubin Ghahramani
UQCV
BDL
287
9,156
0
06 Jun 2015
1