ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1909.05862
  4. Cited By
Learning Symbolic Physics with Graph Networks

Learning Symbolic Physics with Graph Networks

12 September 2019
M. Cranmer
Rui Xu
Peter W. Battaglia
S. Ho
    PINN
    AI4CE
ArXivPDFHTML

Papers citing "Learning Symbolic Physics with Graph Networks"

16 / 16 papers shown
Title
Decomposing heterogeneous dynamical systems with graph neural networks
Decomposing heterogeneous dynamical systems with graph neural networks
Cédric Allier
Magdalena C. Schneider
Michael Innerberger
Larissa Heinrich
J. Bogovic
S. Saalfeld
CML
AI4CE
38
0
0
27 Jul 2024
Symbolic Regression for Beyond the Standard Model Physics
Symbolic Regression for Beyond the Standard Model Physics
Shehu AbdusSalam
Steve Abel
M. Romão
27
5
0
28 May 2024
Machine Learning for Partial Differential Equations
Machine Learning for Partial Differential Equations
Steven L. Brunton
J. Nathan Kutz
AI4CE
42
20
0
30 Mar 2023
The transformative potential of machine learning for experiments in
  fluid mechanics
The transformative potential of machine learning for experiments in fluid mechanics
Ricardo Vinuesa
Steven L. Brunton
B. McKeon
AI4CE
32
68
0
28 Mar 2023
A Generalization of ViT/MLP-Mixer to Graphs
A Generalization of ViT/MLP-Mixer to Graphs
Xiaoxin He
Bryan Hooi
T. Laurent
Adam Perold
Yann LeCun
Xavier Bresson
47
88
0
27 Dec 2022
Is the Machine Smarter than the Theorist: Deriving Formulas for Particle
  Kinematics with Symbolic Regression
Is the Machine Smarter than the Theorist: Deriving Formulas for Particle Kinematics with Symbolic Regression
Zhongtian Dong
K. Kong
Konstantin T. Matchev
Katia Matcheva
46
13
0
15 Nov 2022
SYMBA: Symbolic Computation of Squared Amplitudes in High Energy Physics
  with Machine Learning
SYMBA: Symbolic Computation of Squared Amplitudes in High Energy Physics with Machine Learning
Abdulhakim Alnuqaydan
S. Gleyzer
Harrison B. Prosper
18
14
0
17 Jun 2022
Simulating Liquids with Graph Networks
Simulating Liquids with Graph Networks
Jonathan Klimesch
Philipp Holl
Nils Thuerey
GNN
AI4CE
24
8
0
14 Mar 2022
Learning Mechanically Driven Emergent Behavior with Message Passing
  Neural Networks
Learning Mechanically Driven Emergent Behavior with Message Passing Neural Networks
Peerasait Prachaseree
Emma Lejeune
PINN
AI4CE
33
11
0
03 Feb 2022
Logic Explained Networks
Logic Explained Networks
Gabriele Ciravegna
Pietro Barbiero
Francesco Giannini
Marco Gori
Pietro Lió
Marco Maggini
S. Melacci
37
69
0
11 Aug 2021
Entropy-based Logic Explanations of Neural Networks
Entropy-based Logic Explanations of Neural Networks
Pietro Barbiero
Gabriele Ciravegna
Francesco Giannini
Pietro Lió
Marco Gori
S. Melacci
FAtt
XAI
25
78
0
12 Jun 2021
The Next Decade in AI: Four Steps Towards Robust Artificial Intelligence
The Next Decade in AI: Four Steps Towards Robust Artificial Intelligence
G. Marcus
VLM
32
353
0
14 Feb 2020
Machine learning and serving of discrete field theories -- when
  artificial intelligence meets the discrete universe
Machine learning and serving of discrete field theories -- when artificial intelligence meets the discrete universe
H. Qin
24
30
0
22 Oct 2019
A Compositional Object-Based Approach to Learning Physical Dynamics
A Compositional Object-Based Approach to Learning Physical Dynamics
Michael Chang
T. Ullman
Antonio Torralba
J. Tenenbaum
AI4CE
OCL
241
438
0
01 Dec 2016
Interaction Networks for Learning about Objects, Relations and Physics
Interaction Networks for Learning about Objects, Relations and Physics
Peter W. Battaglia
Razvan Pascanu
Matthew Lai
Danilo Jimenez Rezende
Koray Kavukcuoglu
AI4CE
OCL
PINN
GNN
280
1,400
0
01 Dec 2016
Geometric deep learning: going beyond Euclidean data
Geometric deep learning: going beyond Euclidean data
M. Bronstein
Joan Bruna
Yann LeCun
Arthur Szlam
P. Vandergheynst
GNN
253
3,239
0
24 Nov 2016
1