ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1909.05167
  4. Cited By
FAT Forensics: A Python Toolbox for Algorithmic Fairness, Accountability
  and Transparency

FAT Forensics: A Python Toolbox for Algorithmic Fairness, Accountability and Transparency

11 September 2019
Kacper Sokol
Raúl Santos-Rodríguez
Peter A. Flach
ArXivPDFHTML

Papers citing "FAT Forensics: A Python Toolbox for Algorithmic Fairness, Accountability and Transparency"

6 / 6 papers shown
Title
Identification, explanation and clinical evaluation of hospital patient
  subtypes
Identification, explanation and clinical evaluation of hospital patient subtypes
Enrico Werner
J. N. Clark
R. Bhamber
M. Ambler
Christopher P Bourdeaux
Alexander Hepburn
C. McWilliams
Raúl Santos-Rodríguez
14
3
0
19 Jan 2023
What and How of Machine Learning Transparency: Building Bespoke
  Explainability Tools with Interoperable Algorithmic Components
What and How of Machine Learning Transparency: Building Bespoke Explainability Tools with Interoperable Algorithmic Components
Kacper Sokol
Alexander Hepburn
Raúl Santos-Rodríguez
Peter A. Flach
39
8
0
08 Sep 2022
FAT Forensics: A Python Toolbox for Implementing and Deploying Fairness,
  Accountability and Transparency Algorithms in Predictive Systems
FAT Forensics: A Python Toolbox for Implementing and Deploying Fairness, Accountability and Transparency Algorithms in Predictive Systems
Kacper Sokol
Alexander Hepburn
Rafael Poyiadzi
M. Clifford
Raúl Santos-Rodríguez
Peter A. Flach
35
29
0
08 Sep 2022
De-biasing "bias" measurement
De-biasing "bias" measurement
K. Lum
Yunfeng Zhang
Amanda Bower
21
27
0
11 May 2022
Fair Preprocessing: Towards Understanding Compositional Fairness of Data
  Transformers in Machine Learning Pipeline
Fair Preprocessing: Towards Understanding Compositional Fairness of Data Transformers in Machine Learning Pipeline
Sumon Biswas
Hridesh Rajan
18
112
0
02 Jun 2021
Predicting brain-age from raw T 1 -weighted Magnetic Resonance Imaging
  data using 3D Convolutional Neural Networks
Predicting brain-age from raw T 1 -weighted Magnetic Resonance Imaging data using 3D Convolutional Neural Networks
L. Fisch
J. Ernsting
N. Winter
V. Holstein
Ramona Leenings
...
T. Kircher
Benjamin Risse
U. Dannlowski
Klaus Berger
Tim Hahn
MedIm
35
12
0
22 Mar 2021
1