Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1909.04715
Cited By
First Analysis of Local GD on Heterogeneous Data
10 September 2019
Ahmed Khaled
Konstantin Mishchenko
Peter Richtárik
FedML
Re-assign community
ArXiv
PDF
HTML
Papers citing
"First Analysis of Local GD on Heterogeneous Data"
45 / 45 papers shown
Title
FedPeWS: Personalized Warmup via Subnetworks for Enhanced Heterogeneous Federated Learning
Nurbek Tastan
Samuel Horváth
Martin Takáč
Karthik Nandakumar
FedML
59
0
0
03 Oct 2024
Semi-Variance Reduction for Fair Federated Learning
Saber Malekmohammadi
Yaoliang Yu
FedML
80
1
0
23 Jun 2024
Kimad: Adaptive Gradient Compression with Bandwidth Awareness
Jihao Xin
Ivan Ilin
Shunkang Zhang
Marco Canini
Peter Richtárik
37
2
0
13 Dec 2023
Efficient Federated Learning via Local Adaptive Amended Optimizer with Linear Speedup
Yan Sun
Li Shen
Hao Sun
Liang Ding
Dacheng Tao
FedML
24
17
0
30 Jul 2023
Federated Multi-Sequence Stochastic Approximation with Local Hypergradient Estimation
Davoud Ataee Tarzanagh
Mingchen Li
Pranay Sharma
Samet Oymak
26
0
0
02 Jun 2023
Local SGD Accelerates Convergence by Exploiting Second Order Information of the Loss Function
Linxuan Pan
Shenghui Song
FedML
25
2
0
24 May 2023
Federated TD Learning over Finite-Rate Erasure Channels: Linear Speedup under Markovian Sampling
Nicolò Dal Fabbro
A. Mitra
George J. Pappas
FedML
35
12
0
14 May 2023
Federated Temporal Difference Learning with Linear Function Approximation under Environmental Heterogeneity
Han Wang
A. Mitra
Hamed Hassani
George J. Pappas
James Anderson
FedML
29
21
0
04 Feb 2023
Communication-Efficient Local SGD with Age-Based Worker Selection
Feng Zhu
Jingjing Zhang
Xin Wang
35
1
0
31 Oct 2022
GradSkip: Communication-Accelerated Local Gradient Methods with Better Computational Complexity
A. Maranjyan
M. Safaryan
Peter Richtárik
34
13
0
28 Oct 2022
Sketching for First Order Method: Efficient Algorithm for Low-Bandwidth Channel and Vulnerability
Zhao Song
Yitan Wang
Zheng Yu
Licheng Zhang
FedML
23
28
0
15 Oct 2022
On the Performance of Gradient Tracking with Local Updates
Edward Duc Hien Nguyen
Sulaiman A. Alghunaim
Kun Yuan
César A. Uribe
40
19
0
10 Oct 2022
STSyn: Speeding Up Local SGD with Straggler-Tolerant Synchronization
Feng Zhu
Jingjing Zhang
Xin Wang
33
3
0
06 Oct 2022
Multi-Level Branched Regularization for Federated Learning
Jinkyu Kim
Geeho Kim
Bohyung Han
FedML
22
53
0
14 Jul 2022
Federated Latent Class Regression for Hierarchical Data
Bin Yang
T. Carette
Masanobu Jimbo
Shinya Maruyama
FedML
20
0
0
22 Jun 2022
Federated Random Reshuffling with Compression and Variance Reduction
Grigory Malinovsky
Peter Richtárik
FedML
27
10
0
08 May 2022
FedNest: Federated Bilevel, Minimax, and Compositional Optimization
Davoud Ataee Tarzanagh
Mingchen Li
Christos Thrampoulidis
Samet Oymak
FedML
42
73
0
04 May 2022
Understanding A Class of Decentralized and Federated Optimization Algorithms: A Multi-Rate Feedback Control Perspective
Xinwei Zhang
Mingyi Hong
N. Elia
FedML
18
3
0
27 Apr 2022
ProxSkip: Yes! Local Gradient Steps Provably Lead to Communication Acceleration! Finally!
Konstantin Mishchenko
Grigory Malinovsky
Sebastian U. Stich
Peter Richtárik
11
151
0
18 Feb 2022
Speeding up Heterogeneous Federated Learning with Sequentially Trained Superclients
Riccardo Zaccone
Andrea Rizzardi
Debora Caldarola
Marco Ciccone
Barbara Caputo
FedML
58
14
0
26 Jan 2022
On Convergence of Federated Averaging Langevin Dynamics
Wei Deng
Qian Zhang
Yi Ma
Zhao Song
Guang Lin
FedML
30
16
0
09 Dec 2021
On the Convergence of Shallow Neural Network Training with Randomly Masked Neurons
Fangshuo Liao
Anastasios Kyrillidis
43
16
0
05 Dec 2021
Federated Semi-Supervised Learning with Class Distribution Mismatch
Zhiguo Wang
Xintong Wang
Ruoyu Sun
Tsung-Hui Chang
FedML
21
12
0
29 Oct 2021
A Stochastic Newton Algorithm for Distributed Convex Optimization
Brian Bullins
Kumar Kshitij Patel
Ohad Shamir
Nathan Srebro
Blake E. Woodworth
28
15
0
07 Oct 2021
Cost-Effective Federated Learning in Mobile Edge Networks
Bing Luo
Xiang Li
Shiqiang Wang
Jianwei Huang
Leandros Tassiulas
FedML
57
72
0
12 Sep 2021
Iterated Vector Fields and Conservatism, with Applications to Federated Learning
Zachary B. Charles
Keith Rush
27
6
0
08 Sep 2021
An Operator Splitting View of Federated Learning
Saber Malekmohammadi
K. Shaloudegi
Zeou Hu
Yaoliang Yu
FedML
26
2
0
12 Aug 2021
Understanding Clipping for Federated Learning: Convergence and Client-Level Differential Privacy
Xinwei Zhang
Xiangyi Chen
Min-Fong Hong
Zhiwei Steven Wu
Jinfeng Yi
FedML
30
91
0
25 Jun 2021
On Large-Cohort Training for Federated Learning
Zachary B. Charles
Zachary Garrett
Zhouyuan Huo
Sergei Shmulyian
Virginia Smith
FedML
21
113
0
15 Jun 2021
Decentralized Federated Averaging
Tao Sun
Dongsheng Li
Bao Wang
FedML
48
207
0
23 Apr 2021
Linear Convergence in Federated Learning: Tackling Client Heterogeneity and Sparse Gradients
A. Mitra
Rayana H. Jaafar
George J. Pappas
Hamed Hassani
FedML
55
157
0
14 Feb 2021
Vertical federated learning based on DFP and BFGS
Wenjie Song
Xuan Shen
FedML
21
6
0
23 Jan 2021
Federated Learning under Importance Sampling
Elsa Rizk
Stefan Vlaski
Ali H. Sayed
FedML
18
52
0
14 Dec 2020
Optimization for Supervised Machine Learning: Randomized Algorithms for Data and Parameters
Filip Hanzely
34
0
0
26 Aug 2020
Tackling the Objective Inconsistency Problem in Heterogeneous Federated Optimization
Jianyu Wang
Qinghua Liu
Hao Liang
Gauri Joshi
H. Vincent Poor
MoMe
FedML
16
1,297
0
15 Jul 2020
Minibatch vs Local SGD for Heterogeneous Distributed Learning
Blake E. Woodworth
Kumar Kshitij Patel
Nathan Srebro
FedML
22
199
0
08 Jun 2020
FedPD: A Federated Learning Framework with Optimal Rates and Adaptivity to Non-IID Data
Xinwei Zhang
Mingyi Hong
S. Dhople
W. Yin
Yang Liu
FedML
21
227
0
22 May 2020
Adaptive Federated Optimization
Sashank J. Reddi
Zachary B. Charles
Manzil Zaheer
Zachary Garrett
Keith Rush
Jakub Konecný
Sanjiv Kumar
H. B. McMahan
FedML
20
1,391
0
29 Feb 2020
Acceleration for Compressed Gradient Descent in Distributed and Federated Optimization
Zhize Li
D. Kovalev
Xun Qian
Peter Richtárik
FedML
AI4CE
29
135
0
26 Feb 2020
Dynamic Federated Learning
Elsa Rizk
Stefan Vlaski
Ali H. Sayed
FedML
22
25
0
20 Feb 2020
Distributed Non-Convex Optimization with Sublinear Speedup under Intermittent Client Availability
Yikai Yan
Chaoyue Niu
Yucheng Ding
Zhenzhe Zheng
Fan Wu
Guihai Chen
Shaojie Tang
Zhihua Wu
FedML
49
37
0
18 Feb 2020
On the Convergence of Local Descent Methods in Federated Learning
Farzin Haddadpour
M. Mahdavi
FedML
19
266
0
31 Oct 2019
Gradient Descent with Compressed Iterates
Ahmed Khaled
Peter Richtárik
21
22
0
10 Sep 2019
On the Convergence of FedAvg on Non-IID Data
Xiang Li
Kaixuan Huang
Wenhao Yang
Shusen Wang
Zhihua Zhang
FedML
70
2,283
0
04 Jul 2019
Adaptive Federated Learning in Resource Constrained Edge Computing Systems
Shiqiang Wang
Tiffany Tuor
Theodoros Salonidis
K. Leung
C. Makaya
T. He
Kevin S. Chan
144
1,687
0
14 Apr 2018
1