ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1909.04422
  4. Cited By
The Mapillary Traffic Sign Dataset for Detection and Classification on a
  Global Scale

The Mapillary Traffic Sign Dataset for Detection and Classification on a Global Scale

10 September 2019
C. Ertler
Jerneja Mislej
Tobias Ollmann
Lorenzo Porzi
Gerhard Neuhold
Yubin Kuang
ArXivPDFHTML

Papers citing "The Mapillary Traffic Sign Dataset for Detection and Classification on a Global Scale"

6 / 6 papers shown
Title
TSCLIP: Robust CLIP Fine-Tuning for Worldwide Cross-Regional Traffic Sign Recognition
TSCLIP: Robust CLIP Fine-Tuning for Worldwide Cross-Regional Traffic Sign Recognition
Guoyang Zhao
Fulong Ma
Weiqing Qi
Chenguang Zhang
Yuxuan Liu
Ming Liu
Jun Ma
VLM
CLIP
106
3
0
23 Sep 2024
Scale generalisation properties of extended scale-covariant and scale-invariant Gaussian derivative networks on image datasets with spatial scaling variations
Scale generalisation properties of extended scale-covariant and scale-invariant Gaussian derivative networks on image datasets with spatial scaling variations
Andrzej Perzanowski
Tony Lindeberg
45
1
0
17 Sep 2024
UrBench: A Comprehensive Benchmark for Evaluating Large Multimodal Models in Multi-View Urban Scenarios
UrBench: A Comprehensive Benchmark for Evaluating Large Multimodal Models in Multi-View Urban Scenarios
Baichuan Zhou
Haote Yang
Dairong Chen
Junyan Ye
Tianyi Bai
Jinhua Yu
Songyang Zhang
Dahua Lin
Conghui He
Weijia Li
VLM
58
3
0
30 Aug 2024
Phantom Sponges: Exploiting Non-Maximum Suppression to Attack Deep
  Object Detectors
Phantom Sponges: Exploiting Non-Maximum Suppression to Attack Deep Object Detectors
Avishag Shapira
Alon Zolfi
Luca Demetrio
Battista Biggio
A. Shabtai
AAML
21
30
0
26 May 2022
Autonomous Driving Strategies at Intersections: Scenarios,
  State-of-the-Art, and Future Outlooks
Autonomous Driving Strategies at Intersections: Scenarios, State-of-the-Art, and Future Outlooks
Lianzhen Wei
Zirui Li
Jian-wei Gong
Cheng Gong
Jiachen Li
13
52
0
24 Jun 2021
OpenStreetMap: Challenges and Opportunities in Machine Learning and
  Remote Sensing
OpenStreetMap: Challenges and Opportunities in Machine Learning and Remote Sensing
John E. Vargas-Muñoz
Shivangi Srivastava
D. Tuia
A. X. Falcão
19
105
0
13 Jul 2020
1