ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1909.03977
  4. Cited By
Learning Fair Rule Lists

Learning Fair Rule Lists

9 September 2019
Ulrich Aïvodji
Julien Ferry
Sébastien Gambs
Marie-José Huguet
Mohamed Siala
    FaML
ArXivPDFHTML

Papers citing "Learning Fair Rule Lists"

17 / 17 papers shown
Title
"How do I fool you?": Manipulating User Trust via Misleading Black Box
  Explanations
"How do I fool you?": Manipulating User Trust via Misleading Black Box Explanations
Himabindu Lakkaraju
Osbert Bastani
46
252
0
15 Nov 2019
The Bouncer Problem: Challenges to Remote Explainability
The Bouncer Problem: Challenges to Remote Explainability
Erwan Le Merrer
Gilles Tredan
33
8
0
03 Oct 2019
The Dangers of Post-hoc Interpretability: Unjustified Counterfactual
  Explanations
The Dangers of Post-hoc Interpretability: Unjustified Counterfactual Explanations
Thibault Laugel
Marie-Jeanne Lesot
Christophe Marsala
X. Renard
Marcin Detyniecki
36
196
0
22 Jul 2019
Explanations can be manipulated and geometry is to blame
Explanations can be manipulated and geometry is to blame
Ann-Kathrin Dombrowski
Maximilian Alber
Christopher J. Anders
M. Ackermann
K. Müller
Pan Kessel
AAML
FAtt
55
329
0
19 Jun 2019
Learning Optimal and Fair Decision Trees for Non-Discriminative
  Decision-Making
Learning Optimal and Fair Decision Trees for Non-Discriminative Decision-Making
S. Aghaei
Javad Azizi
P. Vayanos
FaML
30
177
0
25 Mar 2019
Fooling Neural Network Interpretations via Adversarial Model
  Manipulation
Fooling Neural Network Interpretations via Adversarial Model Manipulation
Juyeon Heo
Sunghwan Joo
Taesup Moon
AAML
FAtt
71
202
0
06 Feb 2019
Fairwashing: the risk of rationalization
Fairwashing: the risk of rationalization
Ulrich Aïvodji
Hiromi Arai
O. Fortineau
Sébastien Gambs
Satoshi Hara
Alain Tapp
FaML
30
146
0
28 Jan 2019
The Frontiers of Fairness in Machine Learning
The Frontiers of Fairness in Machine Learning
Alexandra Chouldechova
Aaron Roth
FaML
130
415
0
20 Oct 2018
Learning Adversarially Fair and Transferable Representations
Learning Adversarially Fair and Transferable Representations
David Madras
Elliot Creager
T. Pitassi
R. Zemel
FaML
323
678
0
17 Feb 2018
A comparative study of fairness-enhancing interventions in machine
  learning
A comparative study of fairness-enhancing interventions in machine learning
Sorelle A. Friedler
C. Scheidegger
Suresh Venkatasubramanian
Sonam Choudhary
Evan P. Hamilton
Derek Roth
FaML
88
639
0
13 Feb 2018
A Survey Of Methods For Explaining Black Box Models
A Survey Of Methods For Explaining Black Box Models
Riccardo Guidotti
A. Monreale
Salvatore Ruggieri
Franco Turini
D. Pedreschi
F. Giannotti
XAI
81
3,922
0
06 Feb 2018
Avoiding Discrimination through Causal Reasoning
Avoiding Discrimination through Causal Reasoning
Niki Kilbertus
Mateo Rojas-Carulla
Giambattista Parascandolo
Moritz Hardt
Dominik Janzing
Bernhard Schölkopf
FaML
CML
88
579
0
08 Jun 2017
Fairness in Criminal Justice Risk Assessments: The State of the Art
Fairness in Criminal Justice Risk Assessments: The State of the Art
R. Berk
Hoda Heidari
S. Jabbari
Michael Kearns
Aaron Roth
42
990
0
27 Mar 2017
Grad-CAM: Why did you say that?
Grad-CAM: Why did you say that?
Ramprasaath R. Selvaraju
Abhishek Das
Ramakrishna Vedantam
Michael Cogswell
Devi Parikh
Dhruv Batra
FAtt
43
469
0
22 Nov 2016
Inherent Trade-Offs in the Fair Determination of Risk Scores
Inherent Trade-Offs in the Fair Determination of Risk Scores
Jon M. Kleinberg
S. Mullainathan
Manish Raghavan
FaML
84
1,762
0
19 Sep 2016
The Mythos of Model Interpretability
The Mythos of Model Interpretability
Zachary Chase Lipton
FaML
123
3,672
0
10 Jun 2016
Certifying and removing disparate impact
Certifying and removing disparate impact
Michael Feldman
Sorelle A. Friedler
John Moeller
C. Scheidegger
Suresh Venkatasubramanian
FaML
129
1,978
0
11 Dec 2014
1