Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1909.03172
Cited By
Towards Understanding the Importance of Noise in Training Neural Networks
7 September 2019
Mo Zhou
Tianyi Liu
Yan Li
Dachao Lin
Enlu Zhou
T. Zhao
MLT
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Towards Understanding the Importance of Noise in Training Neural Networks"
9 / 9 papers shown
Title
Uncertainty Injection: A Deep Learning Method for Robust Optimization
W. Cui
Wei Yu
UQCV
OOD
27
6
0
23 Feb 2023
Noise Regularizes Over-parameterized Rank One Matrix Recovery, Provably
Tianyi Liu
Yan Li
Enlu Zhou
Tuo Zhao
38
1
0
07 Feb 2022
PAGE-PG: A Simple and Loopless Variance-Reduced Policy Gradient Method with Probabilistic Gradient Estimation
Matilde Gargiani
Andrea Zanelli
Andrea Martinelli
Tyler H. Summers
John Lygeros
41
14
0
01 Feb 2022
Noisy Gradient Descent Converges to Flat Minima for Nonconvex Matrix Factorization
Tianyi Liu
Yan Li
S. Wei
Enlu Zhou
T. Zhao
21
13
0
24 Feb 2021
Artificial Neural Variability for Deep Learning: On Overfitting, Noise Memorization, and Catastrophic Forgetting
Zeke Xie
Fengxiang He
Shaopeng Fu
Issei Sato
Dacheng Tao
Masashi Sugiyama
21
60
0
12 Nov 2020
Review: Deep Learning in Electron Microscopy
Jeffrey M. Ede
44
79
0
17 Sep 2020
Neural Proximal/Trust Region Policy Optimization Attains Globally Optimal Policy
Boyi Liu
Qi Cai
Zhuoran Yang
Zhaoran Wang
30
108
0
25 Jun 2019
On Large-Batch Training for Deep Learning: Generalization Gap and Sharp Minima
N. Keskar
Dheevatsa Mudigere
J. Nocedal
M. Smelyanskiy
P. T. P. Tang
ODL
312
2,896
0
15 Sep 2016
The Loss Surfaces of Multilayer Networks
A. Choromańska
Mikael Henaff
Michaël Mathieu
Gerard Ben Arous
Yann LeCun
ODL
186
1,186
0
30 Nov 2014
1