28
15

PaLM: A Hybrid Parser and Language Model

Abstract

We present PaLM, a hybrid parser and neural language model. Building on an RNN language model, PaLM adds an attention layer over text spans in the left context. An unsupervised constituency parser can be derived from its attention weights, using a greedy decoding algorithm. We evaluate PaLM on language modeling, and empirically show that it outperforms strong baselines. If syntactic annotations are available, the attention component can be trained in a supervised manner, providing syntactically-informed representations of the context, and further improving language modeling performance.

View on arXiv
Comments on this paper

We use cookies and other tracking technologies to improve your browsing experience on our website, to show you personalized content and targeted ads, to analyze our website traffic, and to understand where our visitors are coming from. See our policy.