ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1909.01500
  4. Cited By
rlpyt: A Research Code Base for Deep Reinforcement Learning in PyTorch

rlpyt: A Research Code Base for Deep Reinforcement Learning in PyTorch

3 September 2019
Adam Stooke
Pieter Abbeel
    OffRL
ArXivPDFHTML

Papers citing "rlpyt: A Research Code Base for Deep Reinforcement Learning in PyTorch"

29 / 29 papers shown
Title
An Empirical Model of Large-Batch Training
An Empirical Model of Large-Batch Training
Sam McCandlish
Jared Kaplan
Dario Amodei
OpenAI Dota Team
65
277
0
14 Dec 2018
Dopamine: A Research Framework for Deep Reinforcement Learning
Dopamine: A Research Framework for Deep Reinforcement Learning
Pablo Samuel Castro
Subhodeep Moitra
Carles Gelada
Saurabh Kumar
Marc G. Bellemare
OffRL
68
278
0
14 Dec 2018
Soft Actor-Critic Algorithms and Applications
Soft Actor-Critic Algorithms and Applications
Tuomas Haarnoja
Aurick Zhou
Kristian Hartikainen
George Tucker
Sehoon Ha
...
Vikash Kumar
Henry Zhu
Abhishek Gupta
Pieter Abbeel
Sergey Levine
136
2,425
0
13 Dec 2018
Horizon: Facebook's Open Source Applied Reinforcement Learning Platform
Horizon: Facebook's Open Source Applied Reinforcement Learning Platform
J. Gauci
Edoardo Conti
Yitao Liang
Kittipat Virochsiri
Yuchen He
Zachary Kaden
Vivek Narayanan
Xiaohui Ye
Zhengxing Chen
Scott Fujimoto
56
139
0
01 Nov 2018
Implicit Quantile Networks for Distributional Reinforcement Learning
Implicit Quantile Networks for Distributional Reinforcement Learning
Will Dabney
Georg Ostrovski
David Silver
Rémi Munos
OffRL
129
532
0
14 Jun 2018
Distributed Distributional Deterministic Policy Gradients
Distributed Distributional Deterministic Policy Gradients
Gabriel Barth-Maron
Matthew W. Hoffman
David Budden
Will Dabney
Dan Horgan
TB Dhruva
Alistair Muldal
N. Heess
Timothy Lillicrap
OffRL
86
480
0
23 Apr 2018
Accelerated Methods for Deep Reinforcement Learning
Accelerated Methods for Deep Reinforcement Learning
Adam Stooke
Pieter Abbeel
OffRL
OnRL
59
136
0
07 Mar 2018
Distributed Prioritized Experience Replay
Distributed Prioritized Experience Replay
Dan Horgan
John Quan
David Budden
Gabriel Barth-Maron
Matteo Hessel
H. V. Hasselt
David Silver
147
740
0
02 Mar 2018
Addressing Function Approximation Error in Actor-Critic Methods
Addressing Function Approximation Error in Actor-Critic Methods
Scott Fujimoto
H. V. Hoof
David Meger
OffRL
172
5,182
0
26 Feb 2018
Soft Actor-Critic: Off-Policy Maximum Entropy Deep Reinforcement
  Learning with a Stochastic Actor
Soft Actor-Critic: Off-Policy Maximum Entropy Deep Reinforcement Learning with a Stochastic Actor
Tuomas Haarnoja
Aurick Zhou
Pieter Abbeel
Sergey Levine
299
8,334
0
04 Jan 2018
RLlib: Abstractions for Distributed Reinforcement Learning
RLlib: Abstractions for Distributed Reinforcement Learning
Eric Liang
Richard Liaw
Philipp Moritz
Robert Nishihara
Roy Fox
Ken Goldberg
Joseph E. Gonzalez
Michael I. Jordan
Ion Stoica
OffRL
AI4CE
63
175
0
26 Dec 2017
Ray: A Distributed Framework for Emerging AI Applications
Ray: A Distributed Framework for Emerging AI Applications
Philipp Moritz
Robert Nishihara
Stephanie Wang
Alexey Tumanov
Richard Liaw
...
Melih Elibol
Zongheng Yang
William Paul
Michael I. Jordan
Ion Stoica
GNN
100
1,258
0
16 Dec 2017
Rainbow: Combining Improvements in Deep Reinforcement Learning
Rainbow: Combining Improvements in Deep Reinforcement Learning
Matteo Hessel
Joseph Modayil
H. V. Hasselt
Tom Schaul
Georg Ostrovski
Will Dabney
Dan Horgan
Bilal Piot
M. G. Azar
David Silver
OffRL
107
2,264
0
06 Oct 2017
A Distributional Perspective on Reinforcement Learning
A Distributional Perspective on Reinforcement Learning
Marc G. Bellemare
Will Dabney
Rémi Munos
OffRL
96
1,504
0
21 Jul 2017
Proximal Policy Optimization Algorithms
Proximal Policy Optimization Algorithms
John Schulman
Filip Wolski
Prafulla Dhariwal
Alec Radford
Oleg Klimov
OffRL
487
19,019
0
20 Jul 2017
OpenAI Gym
OpenAI Gym
Greg Brockman
Vicki Cheung
Ludwig Pettersson
Jonas Schneider
John Schulman
Jie Tang
Wojciech Zaremba
OffRL
ODL
214
5,076
0
05 Jun 2016
TensorFlow: A system for large-scale machine learning
TensorFlow: A system for large-scale machine learning
Martín Abadi
P. Barham
Jianmin Chen
Zhiwen Chen
Andy Davis
...
Vijay Vasudevan
Pete Warden
Martin Wicke
Yuan Yu
Xiaoqiang Zhang
GNN
AI4CE
431
18,350
0
27 May 2016
Benchmarking Deep Reinforcement Learning for Continuous Control
Benchmarking Deep Reinforcement Learning for Continuous Control
Yan Duan
Xi Chen
Rein Houthooft
John Schulman
Pieter Abbeel
OffRL
79
1,693
0
22 Apr 2016
Continuous Deep Q-Learning with Model-based Acceleration
Continuous Deep Q-Learning with Model-based Acceleration
S. Gu
Timothy Lillicrap
Ilya Sutskever
Sergey Levine
89
1,013
0
02 Mar 2016
Asynchronous Methods for Deep Reinforcement Learning
Asynchronous Methods for Deep Reinforcement Learning
Volodymyr Mnih
Adria Puigdomenech Badia
M. Berk Mirza
Alex Graves
Timothy Lillicrap
Tim Harley
David Silver
Koray Kavukcuoglu
197
8,851
0
04 Feb 2016
Dueling Network Architectures for Deep Reinforcement Learning
Dueling Network Architectures for Deep Reinforcement Learning
Ziyun Wang
Tom Schaul
Matteo Hessel
H. V. Hasselt
Marc Lanctot
Nando de Freitas
OffRL
91
3,755
0
20 Nov 2015
Prioritized Experience Replay
Prioritized Experience Replay
Tom Schaul
John Quan
Ioannis Antonoglou
David Silver
OffRL
214
3,788
0
18 Nov 2015
Deep Reinforcement Learning with Double Q-learning
Deep Reinforcement Learning with Double Q-learning
H. V. Hasselt
A. Guez
David Silver
OffRL
167
7,639
0
22 Sep 2015
Trust Region Policy Optimization
Trust Region Policy Optimization
John Schulman
Sergey Levine
Philipp Moritz
Michael I. Jordan
Pieter Abbeel
277
6,767
0
19 Feb 2015
cuDNN: Efficient Primitives for Deep Learning
cuDNN: Efficient Primitives for Deep Learning
Sharan Chetlur
Cliff Woolley
Philippe Vandermersch
Jonathan M. Cohen
J. Tran
Bryan Catanzaro
Evan Shelhamer
127
1,846
0
03 Oct 2014
Playing Atari with Deep Reinforcement Learning
Playing Atari with Deep Reinforcement Learning
Volodymyr Mnih
Koray Kavukcuoglu
David Silver
Alex Graves
Ioannis Antonoglou
Daan Wierstra
Martin Riedmiller
125
12,227
0
19 Dec 2013
Theano: new features and speed improvements
Theano: new features and speed improvements
Frédéric Bastien
Pascal Lamblin
Razvan Pascanu
James Bergstra
Ian Goodfellow
Arnaud Bergeron
Nicolas Bouchard
David Warde-Farley
Yoshua Bengio
85
1,419
0
23 Nov 2012
The Arcade Learning Environment: An Evaluation Platform for General
  Agents
The Arcade Learning Environment: An Evaluation Platform for General Agents
Marc G. Bellemare
Yavar Naddaf
J. Veness
Michael Bowling
114
3,006
0
19 Jul 2012
HOGWILD!: A Lock-Free Approach to Parallelizing Stochastic Gradient
  Descent
HOGWILD!: A Lock-Free Approach to Parallelizing Stochastic Gradient Descent
Feng Niu
Benjamin Recht
Christopher Ré
Stephen J. Wright
191
2,273
0
28 Jun 2011
1