ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1908.10859
  4. Cited By
High-Order Langevin Diffusion Yields an Accelerated MCMC Algorithm

High-Order Langevin Diffusion Yields an Accelerated MCMC Algorithm

28 August 2019
Wenlong Mou
Yian Ma
Martin J. Wainwright
Peter L. Bartlett
Michael I. Jordan
    DiffM
ArXivPDFHTML

Papers citing "High-Order Langevin Diffusion Yields an Accelerated MCMC Algorithm"

21 / 21 papers shown
Title
Generative Modelling with High-Order Langevin Dynamics
Generative Modelling with High-Order Langevin Dynamics
Ziqiang Shi
Rujie Liu
DiffM
79
2
0
03 Jan 2025
The Randomized Midpoint Method for Log-Concave Sampling
The Randomized Midpoint Method for Log-Concave Sampling
Ruoqi Shen
Y. Lee
72
114
0
12 Sep 2019
Fast mixing of Metropolized Hamiltonian Monte Carlo: Benefits of
  multi-step gradients
Fast mixing of Metropolized Hamiltonian Monte Carlo: Benefits of multi-step gradients
Yuansi Chen
Raaz Dwivedi
Martin J. Wainwright
Bin Yu
33
101
0
29 May 2019
Is There an Analog of Nesterov Acceleration for MCMC?
Is There an Analog of Nesterov Acceleration for MCMC?
Yian Ma
Niladri Chatterji
Xiang Cheng
Nicolas Flammarion
Peter L. Bartlett
Michael I. Jordan
BDL
29
78
0
04 Feb 2019
Algorithmic Theory of ODEs and Sampling from Well-conditioned Logconcave
  Densities
Algorithmic Theory of ODEs and Sampling from Well-conditioned Logconcave Densities
Y. Lee
Zhao Song
Santosh Vempala
58
37
0
15 Dec 2018
Sampling Can Be Faster Than Optimization
Sampling Can Be Faster Than Optimization
Yian Ma
Yuansi Chen
Chi Jin
Nicolas Flammarion
Michael I. Jordan
56
183
0
20 Nov 2018
Understanding the Acceleration Phenomenon via High-Resolution
  Differential Equations
Understanding the Acceleration Phenomenon via High-Resolution Differential Equations
Bin Shi
S. Du
Michael I. Jordan
Weijie J. Su
39
256
0
21 Oct 2018
On sampling from a log-concave density using kinetic Langevin diffusions
On sampling from a log-concave density using kinetic Langevin diffusions
A. Dalalyan
L. Riou-Durand
58
154
0
24 Jul 2018
Sharp convergence rates for Langevin dynamics in the nonconvex setting
Sharp convergence rates for Langevin dynamics in the nonconvex setting
Xiang Cheng
Niladri S. Chatterji
Yasin Abbasi-Yadkori
Peter L. Bartlett
Michael I. Jordan
45
166
0
04 May 2018
Coupling and Convergence for Hamiltonian Monte Carlo
Coupling and Convergence for Hamiltonian Monte Carlo
Nawaf Bou-Rabee
A. Eberle
Raphael Zimmer
88
137
0
01 May 2018
On the Theory of Variance Reduction for Stochastic Gradient Monte Carlo
On the Theory of Variance Reduction for Stochastic Gradient Monte Carlo
Niladri S. Chatterji
Nicolas Flammarion
Yian Ma
Peter L. Bartlett
Michael I. Jordan
38
87
0
15 Feb 2018
Log-concave sampling: Metropolis-Hastings algorithms are fast
Log-concave sampling: Metropolis-Hastings algorithms are fast
Raaz Dwivedi
Yuansi Chen
Martin J. Wainwright
Bin Yu
63
253
0
08 Jan 2018
User-friendly guarantees for the Langevin Monte Carlo with inaccurate
  gradient
User-friendly guarantees for the Langevin Monte Carlo with inaccurate gradient
A. Dalalyan
Avetik G. Karagulyan
60
296
0
29 Sep 2017
Rapid Mixing of Hamiltonian Monte Carlo on Strongly Log-Concave
  Distributions
Rapid Mixing of Hamiltonian Monte Carlo on Strongly Log-Concave Distributions
Oren Mangoubi
Aaron Smith
97
106
0
23 Aug 2017
Underdamped Langevin MCMC: A non-asymptotic analysis
Underdamped Langevin MCMC: A non-asymptotic analysis
Xiang Cheng
Niladri S. Chatterji
Peter L. Bartlett
Michael I. Jordan
82
296
0
12 Jul 2017
Convergence of Langevin MCMC in KL-divergence
Convergence of Langevin MCMC in KL-divergence
Xiang Cheng
Peter L. Bartlett
34
189
0
25 May 2017
High-dimensional Bayesian inference via the Unadjusted Langevin
  Algorithm
High-dimensional Bayesian inference via the Unadjusted Langevin Algorithm
Alain Durmus
Eric Moulines
71
352
0
05 May 2016
A Complete Recipe for Stochastic Gradient MCMC
A Complete Recipe for Stochastic Gradient MCMC
Yian Ma
Tianqi Chen
E. Fox
BDL
SyDa
52
485
0
15 Jun 2015
A Differential Equation for Modeling Nesterov's Accelerated Gradient
  Method: Theory and Insights
A Differential Equation for Modeling Nesterov's Accelerated Gradient Method: Theory and Insights
Weijie Su
Stephen P. Boyd
Emmanuel J. Candes
149
1,161
0
04 Mar 2015
Theoretical guarantees for approximate sampling from smooth and
  log-concave densities
Theoretical guarantees for approximate sampling from smooth and log-concave densities
A. Dalalyan
61
514
0
23 Dec 2014
MCMC using Hamiltonian dynamics
MCMC using Hamiltonian dynamics
Radford M. Neal
285
3,278
0
09 Jun 2012
1