Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1908.09375
Cited By
Theoretical Issues in Deep Networks: Approximation, Optimization and Generalization
25 August 2019
T. Poggio
Andrzej Banburski
Q. Liao
ODL
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Theoretical Issues in Deep Networks: Approximation, Optimization and Generalization"
50 / 72 papers shown
Title
Enhancing Physics-Informed Neural Networks with a Hybrid Parallel Kolmogorov-Arnold and MLP Architecture
Zuyu Xu
Bin Lv
41
0
0
30 Mar 2025
A Genetic Algorithm-Based Approach for Automated Optimization of Kolmogorov-Arnold Networks in Classification Tasks
Quan Long
Bin Wang
Bing Xue
Mengjie Zhang
53
0
0
29 Jan 2025
Efficiency Bottlenecks of Convolutional Kolmogorov-Arnold Networks: A Comprehensive Scrutiny with ImageNet, AlexNet, LeNet and Tabular Classification
Ashim Dahal
Saydul Akbar Murad
Nick Rahimi
42
0
0
27 Jan 2025
Dissecting a Small Artificial Neural Network
Xiguang Yang
Krish Arora
Michael Bachmann
32
0
0
03 Jan 2025
Gradient Boosting Trees and Large Language Models for Tabular Data Few-Shot Learning
Carlos Huertas
LMTD
56
1
0
06 Nov 2024
A resource-efficient model for deep kernel learning
Luisa DÁmore
26
0
0
13 Oct 2024
KAN: Kolmogorov-Arnold Networks
Ziming Liu
Yixuan Wang
Sachin Vaidya
Fabian Ruehle
James Halverson
Marin Soljacic
Thomas Y. Hou
Max Tegmark
98
485
0
30 Apr 2024
Training all-mechanical neural networks for task learning through in situ backpropagation
Shuaifeng Li
Xiaoming Mao
AI4CE
39
1
0
23 Apr 2024
Generative Subspace Adversarial Active Learning for Outlier Detection in Multiple Views of High-dimensional Data
Jose Cribeiro-Ramallo
Vadim Arzamasov
Federico Matteucci
Denis Wambold
Klemens Bohm
34
1
0
20 Apr 2024
A Unified Kernel for Neural Network Learning
Shao-Qun Zhang
Zong-Yi Chen
Yong-Ming Tian
Xun Lu
31
1
0
26 Mar 2024
Beyond Single-Model Views for Deep Learning: Optimization versus Generalizability of Stochastic Optimization Algorithms
Toki Tahmid Inan
Mingrui Liu
Amarda Shehu
36
0
0
01 Mar 2024
Surfing the modeling of PoS taggers in low-resource scenarios
M. Ferro
V. Darriba
F. J. Ribadas
J. G. Gil
19
0
0
04 Feb 2024
Understanding and Leveraging the Learning Phases of Neural Networks
Johannes Schneider
Mohit Prabhushankar
AI4CE
19
1
0
11 Dec 2023
Efficient Neural Networks for Tiny Machine Learning: A Comprehensive Review
M. Lê
Pierre Wolinski
Julyan Arbel
39
8
0
20 Nov 2023
Fundamental Limits of Deep Learning-Based Binary Classifiers Trained with Hinge Loss
T. Getu
Georges Kaddoum
M. Bennis
40
1
0
13 Sep 2023
Neural Hilbert Ladders: Multi-Layer Neural Networks in Function Space
Zhengdao Chen
44
1
0
03 Jul 2023
Why do CNNs excel at feature extraction? A mathematical explanation
V. Nandakumar
Arush Tagade
Tongliang Liu
FAtt
13
0
0
03 Jul 2023
Homological Neural Networks: A Sparse Architecture for Multivariate Complexity
Yuanrong Wang
Antonio Briola
T. Aste
46
6
0
27 Jun 2023
Evaluating Machine Learning Models with NERO: Non-Equivariance Revealed on Orbits
Zhuokai Zhao
Takumi Matsuzawa
W. Irvine
Michael Maire
G. Kindlmann
54
2
0
31 May 2023
Learning Capacity: A Measure of the Effective Dimensionality of a Model
Daiwei Chen
Wei-Di Chang
Pratik Chaudhari
37
3
0
27 May 2023
Performance Limits of a Deep Learning-Enabled Text Semantic Communication under Interference
T. Getu
Walid Saad
Georges Kaddoum
M. Bennis
26
8
0
15 Feb 2023
Implicit regularization in Heavy-ball momentum accelerated stochastic gradient descent
Avrajit Ghosh
He Lyu
Xitong Zhang
Rongrong Wang
53
21
0
02 Feb 2023
Deep networks for system identification: a Survey
G. Pillonetto
Aleksandr Aravkin
Daniel Gedon
L. Ljung
Antônio H. Ribeiro
Thomas B. Schon
OOD
37
36
0
30 Jan 2023
Norm-based Generalization Bounds for Compositionally Sparse Neural Networks
Tomer Galanti
Mengjia Xu
Liane Galanti
T. Poggio
38
9
0
28 Jan 2023
Deep Learning Meets Sparse Regularization: A Signal Processing Perspective
Rahul Parhi
Robert D. Nowak
43
25
0
23 Jan 2023
Exploring the Approximation Capabilities of Multiplicative Neural Networks for Smooth Functions
Ido Ben-Shaul
Tomer Galanti
S. Dekel
31
3
0
11 Jan 2023
A Dynamics Theory of Implicit Regularization in Deep Low-Rank Matrix Factorization
JIAN-PENG Cao
Chao Qian
Yihui Huang
Dicheng Chen
Yuncheng Gao
Jiyang Dong
D. Guo
X. Qu
24
1
0
29 Dec 2022
Quantum Policy Gradient Algorithm with Optimized Action Decoding
Nico Meyer
Daniel D. Scherer
Axel Plinge
Christopher Mutschler
M. Hartmann
29
20
0
13 Dec 2022
Super-model ecosystem: A domain-adaptation perspective
Fengxiang He
Dacheng Tao
DiffM
35
1
0
30 Aug 2022
What Can Be Learnt With Wide Convolutional Neural Networks?
Francesco Cagnetta
Alessandro Favero
M. Wyart
MLT
41
12
0
01 Aug 2022
Biologically Plausible Training of Deep Neural Networks Using a Top-down Credit Assignment Network
Jian-Hui Chen
Cheng-Lin Liu
Zuoren Wang
28
0
0
01 Aug 2022
Blind Estimation of a Doubly Selective OFDM Channel: A Deep Learning Algorithm and Theory
T. Getu
N. Golmie
D. Griffith
24
2
0
30 May 2022
A Falsificationist Account of Artificial Neural Networks
O. Buchholz
Eric Raidl
AI4CE
17
4
0
03 May 2022
On the influence of over-parameterization in manifold based surrogates and deep neural operators
Katiana Kontolati
S. Goswami
Michael D. Shields
George Karniadakis
17
41
0
09 Mar 2022
Explicit Regularization via Regularizer Mirror Descent
Navid Azizan
Sahin Lale
B. Hassibi
20
4
0
22 Feb 2022
The learning phases in NN: From Fitting the Majority to Fitting a Few
Johannes Schneider
16
0
0
16 Feb 2022
Neural Capacitance: A New Perspective of Neural Network Selection via Edge Dynamics
Chunheng Jiang
Tejaswini Pedapati
Pin-Yu Chen
Yizhou Sun
Jianxi Gao
24
2
0
11 Jan 2022
Federated Optimization of Smooth Loss Functions
Ali Jadbabaie
A. Makur
Devavrat Shah
FedML
29
7
0
06 Jan 2022
On the Role of Neural Collapse in Transfer Learning
Tomer Galanti
András Gyorgy
Marcus Hutter
SSL
21
88
0
30 Dec 2021
Towards the One Learning Algorithm Hypothesis: A System-theoretic Approach
Christos N. Mavridis
John S. Baras
26
1
0
04 Dec 2021
Error Bounds for a Matrix-Vector Product Approximation with Deep ReLU Neural Networks
T. Getu
27
2
0
25 Nov 2021
Conditionally Gaussian PAC-Bayes
Eugenio Clerico
George Deligiannidis
Arnaud Doucet
37
10
0
22 Oct 2021
The Tensor Brain: A Unified Theory of Perception, Memory and Semantic Decoding
Volker Tresp
Sahand Sharifzadeh
Hang Li
Dario Konopatzki
Yunpu Ma
32
5
0
27 Sep 2021
Task Guided Compositional Representation Learning for ZDA
Shuang Liu
Mete Ozay
OOD
25
0
0
13 Sep 2021
Towards Understanding Theoretical Advantages of Complex-Reaction Networks
Shao-Qun Zhang
Gaoxin Wei
Zhi-Hua Zhou
23
17
0
15 Aug 2021
Distribution of Classification Margins: Are All Data Equal?
Andrzej Banburski
Fernanda De La Torre
Nishka Pant
Ishana Shastri
T. Poggio
33
4
0
21 Jul 2021
Convergence rates for shallow neural networks learned by gradient descent
Alina Braun
Michael Kohler
S. Langer
Harro Walk
22
10
0
20 Jul 2021
Estimation of a regression function on a manifold by fully connected deep neural networks
Michael Kohler
S. Langer
U. Reif
22
4
0
20 Jul 2021
Theory of Deep Convolutional Neural Networks III: Approximating Radial Functions
Tong Mao
Zhongjie Shi
Ding-Xuan Zhou
16
33
0
02 Jul 2021
Information Bottleneck: Exact Analysis of (Quantized) Neural Networks
S. Lorenzen
Christian Igel
M. Nielsen
MQ
11
17
0
24 Jun 2021
1
2
Next