ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1908.08983
  4. Cited By
A Little Annotation does a Lot of Good: A Study in Bootstrapping
  Low-resource Named Entity Recognizers

A Little Annotation does a Lot of Good: A Study in Bootstrapping Low-resource Named Entity Recognizers

23 August 2019
Aditi Chaudhary
Jiateng Xie
Zaid A. W. Sheikh
Graham Neubig
J. Carbonell
ArXiv (abs)PDFHTML

Papers citing "A Little Annotation does a Lot of Good: A Study in Bootstrapping Low-resource Named Entity Recognizers"

12 / 12 papers shown
Title
Neural Cross-Lingual Named Entity Recognition with Minimal Resources
Neural Cross-Lingual Named Entity Recognition with Minimal Resources
Jiateng Xie
Zhilin Yang
Graham Neubig
Noah A. Smith
J. Carbonell
69
186
0
29 Aug 2018
Adapting Word Embeddings to New Languages with Morphological and
  Phonological Subword Representations
Adapting Word Embeddings to New Languages with Morphological and Phonological Subword Representations
Aditi Chaudhary
Chunting Zhou
Lori S. Levin
Graham Neubig
David R. Mortensen
J. Carbonell
54
62
0
28 Aug 2018
Deep contextualized word representations
Deep contextualized word representations
Matthew E. Peters
Mark Neumann
Mohit Iyyer
Matt Gardner
Christopher Clark
Kenton Lee
Luke Zettlemoyer
NAI
233
11,565
0
15 Feb 2018
Word Translation Without Parallel Data
Word Translation Without Parallel Data
Alexis Conneau
Guillaume Lample
MarcÁurelio Ranzato
Ludovic Denoyer
Hervé Jégou
296
1,662
0
11 Oct 2017
Deep Active Learning for Named Entity Recognition
Deep Active Learning for Named Entity Recognition
Yanyao Shen
Hyokun Yun
Zachary Chase Lipton
Y. Kronrod
Anima Anandkumar
HAI
95
456
0
19 Jul 2017
Model Transfer for Tagging Low-resource Languages using a Bilingual
  Dictionary
Model Transfer for Tagging Low-resource Languages using a Bilingual Dictionary
Meng Fang
Trevor Cohn
57
73
0
01 May 2017
Reading Wikipedia to Answer Open-Domain Questions
Reading Wikipedia to Answer Open-Domain Questions
Danqi Chen
Adam Fisch
Jason Weston
Antoine Bordes
RALM
121
2,019
0
31 Mar 2017
Joint Extraction of Events and Entities within a Document Context
Joint Extraction of Events and Entities within a Document Context
Bishan Yang
Tom Michael Mitchell
76
247
0
12 Sep 2016
Neural Architectures for Named Entity Recognition
Neural Architectures for Named Entity Recognition
Guillaume Lample
Miguel Ballesteros
Sandeep Subramanian
Kazuya Kawakami
Chris Dyer
228
4,018
0
04 Mar 2016
End-to-end Sequence Labeling via Bi-directional LSTM-CNNs-CRF
End-to-end Sequence Labeling via Bi-directional LSTM-CNNs-CRF
Xuezhe Ma
Eduard H. Hovy
116
2,657
0
04 Mar 2016
Massively Multilingual Word Embeddings
Massively Multilingual Word Embeddings
Bridger Waleed Ammar
George Mulcaire
Yulia Tsvetkov
Guillaume Lample
Chris Dyer
Noah A. Smith
129
271
0
05 Feb 2016
Natural Language Processing (almost) from Scratch
Natural Language Processing (almost) from Scratch
R. Collobert
Jason Weston
Léon Bottou
Michael Karlen
Koray Kavukcuoglu
Pavel P. Kuksa
203
7,729
0
02 Mar 2011
1