ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1908.08932
  4. Cited By
Learning Filter Basis for Convolutional Neural Network Compression

Learning Filter Basis for Convolutional Neural Network Compression

23 August 2019
Yawei Li
Shuhang Gu
Luc Van Gool
Radu Timofte
    SupR
ArXivPDFHTML

Papers citing "Learning Filter Basis for Convolutional Neural Network Compression"

24 / 24 papers shown
Title
Large Convolutional Model Tuning via Filter Subspace
Large Convolutional Model Tuning via Filter Subspace
Wei Chen
Zichen Miao
Qiang Qiu
51
3
0
01 Mar 2024
Resource Constrained Model Compression via Minimax Optimization for
  Spiking Neural Networks
Resource Constrained Model Compression via Minimax Optimization for Spiking Neural Networks
Jue Chen
Huan Yuan
Jianchao Tan
Bin Chen
Chengru Song
Di Zhang
25
3
0
09 Aug 2023
Realistic Bokeh Effect Rendering on Mobile GPUs, Mobile AI & AIM 2022
  challenge: Report
Realistic Bokeh Effect Rendering on Mobile GPUs, Mobile AI & AIM 2022 challenge: Report
Andrey D. Ignatov
Radu Timofte
Jin Zhang
Feng Zhang
G. Yu
...
Mingyang Qian
Huixin Ma
Yanan Li
Xiaotao Wang
Lei Lei
15
10
0
07 Nov 2022
Efficient and Accurate Quantized Image Super-Resolution on Mobile NPUs,
  Mobile AI & AIM 2022 challenge: Report
Efficient and Accurate Quantized Image Super-Resolution on Mobile NPUs, Mobile AI & AIM 2022 challenge: Report
Andrey D. Ignatov
Radu Timofte
Maurizio Denna
Abdelbadie Younes
Ganzorig Gankhuyag
...
Jing Liu
Garas Gendy
Nabil Sabor
J. Hou
Guanghui He
SupR
MQ
23
31
0
07 Nov 2022
Efficient Single-Image Depth Estimation on Mobile Devices, Mobile AI &
  AIM 2022 Challenge: Report
Efficient Single-Image Depth Estimation on Mobile Devices, Mobile AI & AIM 2022 Challenge: Report
Andrey D. Ignatov
Grigory Malivenko
Radu Timofte
Lukasz Treszczotko
Xin-ke Chang
...
Dongwon Park
Seongmin Hong
Joonhee Lee
Seunggyu Lee
Sengsub Chun
36
17
0
07 Nov 2022
Learned Smartphone ISP on Mobile GPUs with Deep Learning, Mobile AI &
  AIM 2022 Challenge: Report
Learned Smartphone ISP on Mobile GPUs with Deep Learning, Mobile AI & AIM 2022 Challenge: Report
Andrey D. Ignatov
Radu Timofte
Shuai Liu
Chaoyu Feng
Furui Bai
...
Xin Lou
Wei Zhou
Cong Pang
Haina Qin
Mingxuan Cai
27
23
0
07 Nov 2022
Pruning by Active Attention Manipulation
Pruning by Active Attention Manipulation
Z. Babaiee
Lucas Liebenwein
Ramin Hasani
Daniela Rus
Radu Grosu
22
0
0
20 Oct 2022
SVD-NAS: Coupling Low-Rank Approximation and Neural Architecture Search
SVD-NAS: Coupling Low-Rank Approximation and Neural Architecture Search
Zhewen Yu
C. Bouganis
32
4
0
22 Aug 2022
Blueprint Separable Residual Network for Efficient Image
  Super-Resolution
Blueprint Separable Residual Network for Efficient Image Super-Resolution
Zheyu Li
Yingqi Liu
Xiangyu Chen
Haoming Cai
Jinjin Gu
Yu Qiao
Chao Dong
27
131
0
12 May 2022
Revisiting Random Channel Pruning for Neural Network Compression
Revisiting Random Channel Pruning for Neural Network Compression
Yawei Li
Kamil Adamczewski
Wen Li
Shuhang Gu
Radu Timofte
Luc Van Gool
24
81
0
11 May 2022
NTIRE 2022 Challenge on Efficient Super-Resolution: Methods and Results
NTIRE 2022 Challenge on Efficient Super-Resolution: Methods and Results
Yawei Li
Kaixuan Zhang
Radu Timofte
Luc Van Gool
F. Kong
...
Deng-Guang Zhou
Kun Zeng
Han-Yuan Lin
Xinyu Chen
Jin-Tao Fang
SupR
36
77
0
11 May 2022
Frequency learning for structured CNN filters with Gaussian fractional
  derivatives
Frequency learning for structured CNN filters with Gaussian fractional derivatives
Nikhil Saldanha
S. Pintea
J. C. V. Gemert
Nergis Tomen
30
8
0
12 Nov 2021
Blending Anti-Aliasing into Vision Transformer
Blending Anti-Aliasing into Vision Transformer
Shengju Qian
Hao Shao
Yi Zhu
Mu Li
Jiaya Jia
26
20
0
28 Oct 2021
Resolution learning in deep convolutional networks using scale-space
  theory
Resolution learning in deep convolutional networks using scale-space theory
Silvia L.Pintea
Nergis Tomen
Stanley F. Goes
Marco Loog
J. C. V. Gemert
SupR
SSL
30
37
0
07 Jun 2021
Fast and Accurate Quantized Camera Scene Detection on Smartphones,
  Mobile AI 2021 Challenge: Report
Fast and Accurate Quantized Camera Scene Detection on Smartphones, Mobile AI 2021 Challenge: Report
Andrey D. Ignatov
Grigory Malivenko
Radu Timofte
Sheng Chen
Xin Xia
...
K. Lyda
L. Khojoyan
Abhishek Thanki
Sayak Paul
Shahid Siddiqui
MQ
21
20
0
17 May 2021
Fast Camera Image Denoising on Mobile GPUs with Deep Learning, Mobile AI
  2021 Challenge: Report
Fast Camera Image Denoising on Mobile GPUs with Deep Learning, Mobile AI 2021 Challenge: Report
Andrey D. Ignatov
Kim Byeoung-su
Radu Timofte
Angeline Pouget
Fenglong Song
...
Lei Lei
Chaoyu Feng
L. Huang
Z. Lei
Feifei Chen
22
30
0
17 May 2021
Toward Compact Deep Neural Networks via Energy-Aware Pruning
Toward Compact Deep Neural Networks via Energy-Aware Pruning
Seul-Ki Yeom
Kyung-Hwan Shim
Jee-Hyun Hwang
CVBM
28
12
0
19 Mar 2021
Lost in Pruning: The Effects of Pruning Neural Networks beyond Test
  Accuracy
Lost in Pruning: The Effects of Pruning Neural Networks beyond Test Accuracy
Lucas Liebenwein
Cenk Baykal
Brandon Carter
David K Gifford
Daniela Rus
AAML
40
71
0
04 Mar 2021
CNNs for JPEGs: A Study in Computational Cost
CNNs for JPEGs: A Study in Computational Cost
Samuel Felipe dos Santos
N. Sebe
Jurandy Almeida
27
2
0
26 Dec 2020
Transform Quantization for CNN (Convolutional Neural Network)
  Compression
Transform Quantization for CNN (Convolutional Neural Network) Compression
Sean I. Young
Wang Zhe
David S. Taubman
B. Girod
MQ
29
69
0
02 Sep 2020
Reparameterizing Convolutions for Incremental Multi-Task Learning
  without Task Interference
Reparameterizing Convolutions for Incremental Multi-Task Learning without Task Interference
Menelaos Kanakis
David Brüggemann
Suman Saha
Stamatios Georgoulis
Anton Obukhov
Luc Van Gool
CLL
30
72
0
24 Jul 2020
T-Basis: a Compact Representation for Neural Networks
T-Basis: a Compact Representation for Neural Networks
Anton Obukhov
M. Rakhuba
Stamatios Georgoulis
Menelaos Kanakis
Dengxin Dai
Luc Van Gool
39
27
0
13 Jul 2020
Group Sparsity: The Hinge Between Filter Pruning and Decomposition for
  Network Compression
Group Sparsity: The Hinge Between Filter Pruning and Decomposition for Network Compression
Yawei Li
Shuhang Gu
Christoph Mayer
Luc Van Gool
Radu Timofte
137
189
0
19 Mar 2020
Incremental Network Quantization: Towards Lossless CNNs with
  Low-Precision Weights
Incremental Network Quantization: Towards Lossless CNNs with Low-Precision Weights
Aojun Zhou
Anbang Yao
Yiwen Guo
Lin Xu
Yurong Chen
MQ
337
1,049
0
10 Feb 2017
1