ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1908.08474
  4. Cited By
The many Shapley values for model explanation

The many Shapley values for model explanation

22 August 2019
Mukund Sundararajan
A. Najmi
    TDI
    FAtt
ArXivPDFHTML

Papers citing "The many Shapley values for model explanation"

20 / 20 papers shown
Title
Computing Exact Shapley Values in Polynomial Time for Product-Kernel Methods
Computing Exact Shapley Values in Polynomial Time for Product-Kernel Methods
Majid Mohammadi
Siu Lun Chau
Krikamol Muandet
FAtt
37
0
0
22 May 2025
Probabilistic Stability Guarantees for Feature Attributions
Probabilistic Stability Guarantees for Feature Attributions
Helen Jin
Anton Xue
Weiqiu You
Surbhi Goel
Eric Wong
40
0
0
18 Apr 2025
Investigating the Duality of Interpretability and Explainability in Machine Learning
Investigating the Duality of Interpretability and Explainability in Machine Learning
Moncef Garouani
Josiane Mothe
Ayah Barhrhouj
Julien Aligon
AAML
54
2
0
27 Mar 2025
Surrogate Modeling for Explainable Predictive Time Series Corrections
Surrogate Modeling for Explainable Predictive Time Series Corrections
Alfredo Lopez
Florian Sobieczky
AI4TS
62
0
0
17 Jan 2025
Unifying Feature-Based Explanations with Functional ANOVA and Cooperative Game Theory
Unifying Feature-Based Explanations with Functional ANOVA and Cooperative Game Theory
Fabian Fumagalli
Maximilian Muschalik
Eyke Hüllermeier
Barbara Hammer
J. Herbinger
FAtt
55
2
0
22 Dec 2024
A Comprehensive Study of Shapley Value in Data Analytics
A Comprehensive Study of Shapley Value in Data Analytics
Hong Lin
Shixin Wan
Zhongle Xie
Ke Chen
Meihui Zhang
Lidan Shou
Gang Chen
115
0
0
02 Dec 2024
T-Explainer: A Model-Agnostic Explainability Framework Based on Gradients
T-Explainer: A Model-Agnostic Explainability Framework Based on Gradients
Evandro S. Ortigossa
Fábio F. Dias
Brian Barr
Claudio T. Silva
L. G. Nonato
FAtt
70
2
0
25 Apr 2024
Explaining Quantum Circuits with Shapley Values: Towards Explainable Quantum Machine Learning
Explaining Quantum Circuits with Shapley Values: Towards Explainable Quantum Machine Learning
R. Heese
Thore Gerlach
Sascha Mucke
Sabine Muller
Matthias Jakobs
Nico Piatkowski
29
18
0
22 Jan 2023
Measuring the Driving Forces of Predictive Performance: Application to Credit Scoring
Measuring the Driving Forces of Predictive Performance: Application to Credit Scoring
Hué Sullivan
Hurlin Christophe
Pérignon Christophe
Saurin Sébastien
35
0
0
12 Dec 2022
On the Tractability of SHAP Explanations
On the Tractability of SHAP Explanations
Guy Van den Broeck
A. Lykov
Maximilian Schleich
Dan Suciu
FAtt
TDI
39
266
0
18 Sep 2020
Explainability in Deep Reinforcement Learning
Explainability in Deep Reinforcement Learning
Alexandre Heuillet
Fabien Couthouis
Natalia Díaz Rodríguez
XAI
40
279
0
15 Aug 2020
Explainable AI for a No-Teardown Vehicle Component Cost Estimation: A
  Top-Down Approach
Explainable AI for a No-Teardown Vehicle Component Cost Estimation: A Top-Down Approach
A. Moawad
E. Islam
Namdoo Kim
R. Vijayagopal
A. Rousseau
Wei Biao Wu
36
5
0
15 Jun 2020
Feature relevance quantification in explainable AI: A causal problem
Feature relevance quantification in explainable AI: A causal problem
Dominik Janzing
Lenon Minorics
Patrick Blobaum
FAtt
CML
26
279
0
29 Oct 2019
Explaining individual predictions when features are dependent: More
  accurate approximations to Shapley values
Explaining individual predictions when features are dependent: More accurate approximations to Shapley values
K. Aas
Martin Jullum
Anders Løland
FAtt
TDI
38
610
0
25 Mar 2019
BERT: Pre-training of Deep Bidirectional Transformers for Language
  Understanding
BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding
Jacob Devlin
Ming-Wei Chang
Kenton Lee
Kristina Toutanova
VLM
SSL
SSeg
364
93,936
0
11 Oct 2018
Consistent Individualized Feature Attribution for Tree Ensembles
Consistent Individualized Feature Attribution for Tree Ensembles
Scott M. Lundberg
G. Erion
Su-In Lee
FAtt
TDI
37
1,379
0
12 Feb 2018
A Unified Approach to Interpreting Model Predictions
A Unified Approach to Interpreting Model Predictions
Scott M. Lundberg
Su-In Lee
FAtt
36
21,459
0
22 May 2017
Axiomatic Attribution for Deep Networks
Axiomatic Attribution for Deep Networks
Mukund Sundararajan
Ankur Taly
Qiqi Yan
OOD
FAtt
52
5,920
0
04 Mar 2017
On Shapley value for measuring importance of dependent inputs
On Shapley value for measuring importance of dependent inputs
Art B. Owen
Clémentine Prieur
FAtt
TDI
33
149
0
06 Oct 2016
"Why Should I Trust You?": Explaining the Predictions of Any Classifier
"Why Should I Trust You?": Explaining the Predictions of Any Classifier
Marco Tulio Ribeiro
Sameer Singh
Carlos Guestrin
FAtt
FaML
100
16,765
0
16 Feb 2016
1