ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1908.08200
  4. Cited By
RATQ: A Universal Fixed-Length Quantizer for Stochastic Optimization

RATQ: A Universal Fixed-Length Quantizer for Stochastic Optimization

22 August 2019
Prathamesh Mayekar
Himanshu Tyagi
    MQ
ArXivPDFHTML

Papers citing "RATQ: A Universal Fixed-Length Quantizer for Stochastic Optimization"

11 / 11 papers shown
Title
Correlated Quantization for Faster Nonconvex Distributed Optimization
Correlated Quantization for Faster Nonconvex Distributed Optimization
Andrei Panferov
Yury Demidovich
Ahmad Rammal
Peter Richtárik
MQ
47
4
0
10 Jan 2024
Matrix Compression via Randomized Low Rank and Low Precision
  Factorization
Matrix Compression via Randomized Low Rank and Low Precision Factorization
R. Saha
Varun Srivastava
Mert Pilanci
26
19
0
17 Oct 2023
Fundamental Limits of Distributed Optimization over Multiple Access
  Channel
Fundamental Limits of Distributed Optimization over Multiple Access Channel
Shubham K. Jha
23
1
0
05 Oct 2023
Linear Stochastic Bandits over a Bit-Constrained Channel
Linear Stochastic Bandits over a Bit-Constrained Channel
A. Mitra
Hamed Hassani
George J. Pappas
42
8
0
02 Mar 2022
Wyner-Ziv Gradient Compression for Federated Learning
Wyner-Ziv Gradient Compression for Federated Learning
Kai Liang
Huiru Zhong
Haoning Chen
Youlong Wu
FedML
23
8
0
16 Nov 2021
Solving Multi-Arm Bandit Using a Few Bits of Communication
Solving Multi-Arm Bandit Using a Few Bits of Communication
Osama A. Hanna
Lin F. Yang
Christina Fragouli
24
16
0
11 Nov 2021
Leveraging Spatial and Temporal Correlations in Sparsified Mean
  Estimation
Leveraging Spatial and Temporal Correlations in Sparsified Mean Estimation
Divyansh Jhunjhunwala
Ankur Mallick
Advait Gadhikar
S. Kadhe
Gauri Joshi
24
10
0
14 Oct 2021
Fundamental limits of over-the-air optimization: Are analog schemes
  optimal?
Fundamental limits of over-the-air optimization: Are analog schemes optimal?
Shubham K. Jha
Prathamesh Mayekar
Himanshu Tyagi
24
7
0
11 Sep 2021
Efficient Randomized Subspace Embeddings for Distributed Optimization
  under a Communication Budget
Efficient Randomized Subspace Embeddings for Distributed Optimization under a Communication Budget
R. Saha
Mert Pilanci
Andrea J. Goldsmith
34
5
0
13 Mar 2021
On-Device Machine Learning: An Algorithms and Learning Theory
  Perspective
On-Device Machine Learning: An Algorithms and Learning Theory Perspective
Sauptik Dhar
Junyao Guo
Jiayi Liu
S. Tripathi
Unmesh Kurup
Mohak Shah
28
141
0
02 Nov 2019
(Bandit) Convex Optimization with Biased Noisy Gradient Oracles
(Bandit) Convex Optimization with Biased Noisy Gradient Oracles
Xiaowei Hu
A. PrashanthL.
András Gyorgy
Csaba Szepesvári
84
65
0
22 Sep 2016
1