ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1908.06756
  4. Cited By
BOAH: A Tool Suite for Multi-Fidelity Bayesian Optimization & Analysis
  of Hyperparameters

BOAH: A Tool Suite for Multi-Fidelity Bayesian Optimization & Analysis of Hyperparameters

16 August 2019
Marius Lindauer
Katharina Eggensperger
Matthias Feurer
André Biedenkapp
Joshua Marben
Philip Muller
Frank Hutter
ArXivPDFHTML

Papers citing "BOAH: A Tool Suite for Multi-Fidelity Bayesian Optimization & Analysis of Hyperparameters"

9 / 9 papers shown
Title
Accel-NASBench: Sustainable Benchmarking for Accelerator-Aware NAS
Accel-NASBench: Sustainable Benchmarking for Accelerator-Aware NAS
Afzal Ahmad
Linfeng Du
Zhiyao Xie
Wei Zhang
18
0
0
09 Apr 2024
Explainable Benchmarking for Iterative Optimization Heuristics
Explainable Benchmarking for Iterative Optimization Heuristics
Niki van Stein
Diederick Vermetten
Anna V. Kononova
Thomas Bäck
32
12
0
31 Jan 2024
ytopt: Autotuning Scientific Applications for Energy Efficiency at Large
  Scales
ytopt: Autotuning Scientific Applications for Energy Efficiency at Large Scales
Xingfu Wu
Prasanna Balaprakash
Michael Kruse
Jaehoon Koo
B. Videau
P. Hovland
V. Taylor
B. Geltz
Siddhartha Jana
Mary W. Hall
32
12
0
28 Mar 2023
Multi-objective hyperparameter optimization with performance uncertainty
Multi-objective hyperparameter optimization with performance uncertainty
A. Hernández
I. Nieuwenhuyse
Gonzalo Nápoles
19
2
0
09 Sep 2022
Naive Automated Machine Learning
Naive Automated Machine Learning
F. Mohr
Marcel Wever
24
11
0
29 Nov 2021
Mutation is all you need
Mutation is all you need
Lennart Schneider
Florian Pfisterer
Martin Binder
B. Bischl
BDL
60
4
0
04 Jul 2021
Autotuning PolyBench Benchmarks with LLVM Clang/Polly Loop Optimization
  Pragmas Using Bayesian Optimization (extended version)
Autotuning PolyBench Benchmarks with LLVM Clang/Polly Loop Optimization Pragmas Using Bayesian Optimization (extended version)
Xingfu Wu
Michael Kruse
Prasanna Balaprakash
H. Finkel
P. Hovland
V. Taylor
Mary W. Hall
34
32
0
27 Apr 2021
CATE: Computation-aware Neural Architecture Encoding with Transformers
CATE: Computation-aware Neural Architecture Encoding with Transformers
Shen Yan
Kaiqiang Song
Z. Feng
Mi Zhang
22
24
0
14 Feb 2021
Auto-PyTorch Tabular: Multi-Fidelity MetaLearning for Efficient and
  Robust AutoDL
Auto-PyTorch Tabular: Multi-Fidelity MetaLearning for Efficient and Robust AutoDL
Lucas Zimmer
Marius Lindauer
Frank Hutter
MU
14
90
0
24 Jun 2020
1