Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1908.05968
Cited By
N2D: (Not Too) Deep Clustering via Clustering the Local Manifold of an Autoencoded Embedding
16 August 2019
Ryan McConville
Raúl Santos-Rodríguez
Robert Piechocki
I. Craddock
Re-assign community
ArXiv
PDF
HTML
Papers citing
"N2D: (Not Too) Deep Clustering via Clustering the Local Manifold of an Autoencoded Embedding"
7 / 7 papers shown
Title
Denoising Cosine Similarity: A Theory-Driven Approach for Efficient Representation Learning
Takumi Nakagawa
Y. Sanada
Hiroki Waida
Yuhui Zhang
Yuichiro Wada
K. Takanashi
Tomonori Yamada
Takafumi Kanamori
DiffM
26
5
0
19 Apr 2023
Deep Clustering with a Constraint for Topological Invariance based on Symmetric InfoNCE
Yuhui Zhang
Yuichiro Wada
Hiroki Waida
Kaito Goto
Yusaku Hino
Takafumi Kanamori
32
3
0
06 Mar 2023
Deep Clustering: A Comprehensive Survey
Yazhou Ren
Jingyu Pu
Zhimeng Yang
Jie Xu
Guofeng Li
X. Pu
Philip S. Yu
Lifang He
HAI
50
103
0
09 Oct 2022
Stacked unsupervised learning with a network architecture found by supervised meta-learning
Kyle L. Luther
H. S. Seung
SSL
27
0
0
06 Jun 2022
Self-supervised Learning on Graphs: Contrastive, Generative,or Predictive
Lirong Wu
Haitao Lin
Zhangyang Gao
Cheng Tan
Stan.Z.Li
SSL
35
243
0
16 May 2021
No Subclass Left Behind: Fine-Grained Robustness in Coarse-Grained Classification Problems
N. Sohoni
Jared A. Dunnmon
Geoffrey Angus
Albert Gu
Christopher Ré
30
243
0
25 Nov 2020
Poisson Learning: Graph Based Semi-Supervised Learning At Very Low Label Rates
Jeff Calder
Brendan Cook
Matthew Thorpe
D. Slepčev
35
82
0
19 Jun 2020
1