Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1908.05195
Cited By
DAPAS : Denoising Autoencoder to Prevent Adversarial attack in Semantic Segmentation
14 August 2019
Seungju Cho
Tae Joon Jun
Byungsoo Oh
Daeyoung Kim
Re-assign community
ArXiv
PDF
HTML
Papers citing
"DAPAS : Denoising Autoencoder to Prevent Adversarial attack in Semantic Segmentation"
7 / 7 papers shown
Title
Uncertainty-weighted Loss Functions for Improved Adversarial Attacks on Semantic Segmentation
Kira Maag
Asja Fischer
AAML
SSeg
36
3
0
26 Oct 2023
Uncertainty-based Detection of Adversarial Attacks in Semantic Segmentation
Kira Maag
Asja Fischer
AAML
UQCV
23
4
0
22 May 2023
Dataset Distillation: A Comprehensive Review
Ruonan Yu
Songhua Liu
Xinchao Wang
DD
53
121
0
17 Jan 2023
Backdoor Attacks Against Dataset Distillation
Yugeng Liu
Zheng Li
Michael Backes
Yun Shen
Yang Zhang
DD
42
28
0
03 Jan 2023
A deep learning model for burn depth classification using ultrasound imaging
Sangrock Lee
Rahul Rahul
James Lukan
Tatiana Boyko
Kateryna Zelenova
Basiel Makled
Conner Parsey
Jack Norfleet
S. De
MedIm
13
13
0
29 Mar 2022
Investigating Vulnerability to Adversarial Examples on Multimodal Data Fusion in Deep Learning
Youngjoon Yu
Hong Joo Lee
Byeong Cheon Kim
Jung Uk Kim
Yong Man Ro
AAML
36
18
0
22 May 2020
Adversarial Machine Learning at Scale
Alexey Kurakin
Ian Goodfellow
Samy Bengio
AAML
296
3,112
0
04 Nov 2016
1