Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1908.03176
Cited By
Defending Against Adversarial Iris Examples Using Wavelet Decomposition
8 August 2019
Sobhan Soleymani
Ali Dabouei
J. Dawson
Nasser M. Nasrabadi
AAML
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"Defending Against Adversarial Iris Examples Using Wavelet Decomposition"
31 / 31 papers shown
Title
Adversarial Examples to Fool Iris Recognition Systems
Sobhan Soleymani
Ali Dabouei
J. Dawson
Nasser M. Nasrabadi
GAN
AAML
46
16
0
21 Jun 2019
Learning to Authenticate with Deep Multibiometric Hashing and Neural Network Decoding
Veeru Talreja
Sobhan Soleymani
Matthew C. Valenti
Nasser M. Nasrabadi
22
15
0
11 Feb 2019
Using Deep Cross Modal Hashing and Error Correcting Codes for Improving the Efficiency of Attribute Guided Facial Image Retrieval
Veeru Talreja
Fariborz Taherkhani
Matthew C. Valenti
Nasser M. Nasrabadi
46
15
0
11 Feb 2019
Fast Geometrically-Perturbed Adversarial Faces
Ali Dabouei
Sobhan Soleymani
J. Dawson
Nasser M. Nasrabadi
CVBM
AAML
47
65
0
24 Sep 2018
Prosodic-Enhanced Siamese Convolutional Neural Networks for Cross-Device Text-Independent Speaker Verification
Sobhan Soleymani
Ali Dabouei
Seyed Mehdi Iranmanesh
Hadi Kazemi
J. Dawson
Nasser M. Nasrabadi
33
18
0
31 Jul 2018
Multi-Level Feature Abstraction from Convolutional Neural Networks for Multimodal Biometric Identification
Sobhan Soleymani
Ali Dabouei
Hadi Kazemi
J. Dawson
Nasser M. Nasrabadi
CVBM
60
70
0
03 Jul 2018
Generalized Bilinear Deep Convolutional Neural Networks for Multimodal Biometric Identification
Sobhan Soleymani
A. Torfi
J. Dawson
Nasser M. Nasrabadi
113
29
0
03 Jul 2018
A Deep Face Identification Network Enhanced by Facial Attributes Prediction
Fariborz Taherkhani
Nasser M. Nasrabadi
J. Dawson
CVBM
67
48
0
20 Apr 2018
Defending against Adversarial Images using Basis Functions Transformations
Uri Shaham
J. Garritano
Yutaro Yamada
Ethan Weinberger
A. Cloninger
Xiuyuan Cheng
Kelly P. Stanton
Y. Kluger
AAML
51
57
0
28 Mar 2018
Adversarial Examples: Attacks and Defenses for Deep Learning
Xiaoyong Yuan
Pan He
Qile Zhu
Xiaolin Li
SILM
AAML
94
1,622
0
19 Dec 2017
PixelDefend: Leveraging Generative Models to Understand and Defend against Adversarial Examples
Yang Song
Taesup Kim
Sebastian Nowozin
Stefano Ermon
Nate Kushman
AAML
110
790
0
30 Oct 2017
Multibiometric Secure System Based on Deep Learning
Veeru Talreja
Matthew C. Valenti
Nasser M. Nasrabadi
33
67
0
07 Aug 2017
Adversarial Examples, Uncertainty, and Transfer Testing Robustness in Gaussian Process Hybrid Deep Networks
John Bradshaw
A. G. Matthews
Zoubin Ghahramani
BDL
AAML
103
171
0
08 Jul 2017
Towards Deep Learning Models Resistant to Adversarial Attacks
Aleksander Madry
Aleksandar Makelov
Ludwig Schmidt
Dimitris Tsipras
Adrian Vladu
SILM
OOD
307
12,069
0
19 Jun 2017
MagNet: a Two-Pronged Defense against Adversarial Examples
Dongyu Meng
Hao Chen
AAML
46
1,208
0
25 May 2017
Adversarial Examples Are Not Easily Detected: Bypassing Ten Detection Methods
Nicholas Carlini
D. Wagner
AAML
126
1,864
0
20 May 2017
Ensemble Adversarial Training: Attacks and Defenses
Florian Tramèr
Alexey Kurakin
Nicolas Papernot
Ian Goodfellow
Dan Boneh
Patrick McDaniel
AAML
177
2,725
0
19 May 2017
Robustness to Adversarial Examples through an Ensemble of Specialists
Mahdieh Abbasi
Christian Gagné
AAML
79
109
0
22 Feb 2017
On the (Statistical) Detection of Adversarial Examples
Kathrin Grosse
Praveen Manoharan
Nicolas Papernot
Michael Backes
Patrick McDaniel
AAML
76
714
0
21 Feb 2017
Reluplex: An Efficient SMT Solver for Verifying Deep Neural Networks
Guy Katz
Clark W. Barrett
D. Dill
Kyle D. Julian
Mykel Kochenderfer
AAML
318
1,873
0
03 Feb 2017
Adversarial examples in the physical world
Alexey Kurakin
Ian Goodfellow
Samy Bengio
SILM
AAML
540
5,897
0
08 Jul 2016
Adversarial Diversity and Hard Positive Generation
Andras Rozsa
Ethan M. Rudd
Terrance E. Boult
81
257
0
05 May 2016
The Limitations of Deep Learning in Adversarial Settings
Nicolas Papernot
Patrick McDaniel
S. Jha
Matt Fredrikson
Z. Berkay Celik
A. Swami
AAML
110
3,962
0
24 Nov 2015
DeepFool: a simple and accurate method to fool deep neural networks
Seyed-Mohsen Moosavi-Dezfooli
Alhussein Fawzi
P. Frossard
AAML
151
4,897
0
14 Nov 2015
Distillation as a Defense to Adversarial Perturbations against Deep Neural Networks
Nicolas Papernot
Patrick McDaniel
Xi Wu
S. Jha
A. Swami
AAML
108
3,072
0
14 Nov 2015
U-Net: Convolutional Networks for Biomedical Image Segmentation
Olaf Ronneberger
Philipp Fischer
Thomas Brox
SSeg
3DV
1.8K
77,196
0
18 May 2015
Adam: A Method for Stochastic Optimization
Diederik P. Kingma
Jimmy Ba
ODL
1.9K
150,115
0
22 Dec 2014
Explaining and Harnessing Adversarial Examples
Ian Goodfellow
Jonathon Shlens
Christian Szegedy
AAML
GAN
277
19,066
0
20 Dec 2014
Going Deeper with Convolutions
Christian Szegedy
Wei Liu
Yangqing Jia
P. Sermanet
Scott E. Reed
Dragomir Anguelov
D. Erhan
Vincent Vanhoucke
Andrew Rabinovich
468
43,658
0
17 Sep 2014
Intriguing properties of neural networks
Christian Szegedy
Wojciech Zaremba
Ilya Sutskever
Joan Bruna
D. Erhan
Ian Goodfellow
Rob Fergus
AAML
275
14,927
1
21 Dec 2013
Do Deep Nets Really Need to be Deep?
Lei Jimmy Ba
R. Caruana
163
2,119
0
21 Dec 2013
1