Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1908.02894
Cited By
How much data is sufficient to learn high-performing algorithms? Generalization guarantees for data-driven algorithm design
8 August 2019
Maria-Florina Balcan
Dan F. DeBlasio
Travis Dick
Carl Kingsford
T. Sandholm
Ellen Vitercik
Re-assign community
ArXiv
PDF
HTML
Papers citing
"How much data is sufficient to learn high-performing algorithms? Generalization guarantees for data-driven algorithm design"
9 / 9 papers shown
Title
Machine Learning for Cutting Planes in Integer Programming: A Survey
Arnaud Deza
Elias Boutros Khalil
25
24
0
17 Feb 2023
Improved Generalization Bound and Learning of Sparsity Patterns for Data-Driven Low-Rank Approximation
Shinsaku Sakaue
Taihei Oki
24
3
0
17 Sep 2022
Generalization Bounds for Data-Driven Numerical Linear Algebra
Peter L. Bartlett
Piotr Indyk
Tal Wagner
22
14
0
16 Jun 2022
Formalizing Preferences Over Runtime Distributions
Devon R. Graham
Kevin Leyton-Brown
Tim Roughgarden
16
5
0
25 May 2022
Learning Predictions for Algorithms with Predictions
M. Khodak
Maria-Florina Balcan
Ameet Talwalkar
Sergei Vassilvitskii
21
25
0
18 Feb 2022
Differentiable Economics for Randomized Affine Maximizer Auctions
Michael J. Curry
T. Sandholm
John P. Dickerson
41
29
0
06 Feb 2022
A Survey of Methods for Automated Algorithm Configuration
Elias Schede
Jasmin Brandt
Alexander Tornede
Marcel Wever
Viktor Bengs
Eyke Hüllermeier
Kevin Tierney
22
48
0
03 Feb 2022
Faster Matchings via Learned Duals
M. Dinitz
Sungjin Im
Thomas Lavastida
Benjamin Moseley
Sergei Vassilvitskii
17
66
0
20 Jul 2021
Learnable and Instance-Robust Predictions for Online Matching, Flows and Load Balancing
Thomas Lavastida
Benjamin Moseley
R. Ravi
Chenyang Xu
OOD
34
56
0
23 Nov 2020
1