ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1908.02386
  4. Cited By
Cheetah: Mixed Low-Precision Hardware & Software Co-Design Framework for
  DNNs on the Edge

Cheetah: Mixed Low-Precision Hardware & Software Co-Design Framework for DNNs on the Edge

6 August 2019
H. F. Langroudi
Zachariah Carmichael
David Pastuch
Dhireesha Kudithipudi
ArXivPDFHTML

Papers citing "Cheetah: Mixed Low-Precision Hardware & Software Co-Design Framework for DNNs on the Edge"

5 / 5 papers shown
Title
GSQ-Tuning: Group-Shared Exponents Integer in Fully Quantized Training for LLMs On-Device Fine-tuning
GSQ-Tuning: Group-Shared Exponents Integer in Fully Quantized Training for LLMs On-Device Fine-tuning
Sifan Zhou
Shuo Wang
Zhihang Yuan
Mingjia Shi
Yuzhang Shang
Dawei Yang
ALM
MQ
90
0
0
18 Feb 2025
AI Augmented Edge and Fog Computing: Trends and Challenges
AI Augmented Edge and Fog Computing: Trends and Challenges
Shreshth Tuli
Fatemeh Mirhakimi
Samodha Pallewatta
Syed Zawad
G. Casale
B. Javadi
Feng Yan
Rajkumar Buyya
N. Jennings
21
56
0
01 Aug 2022
How Low Can We Go: Trading Memory for Error in Low-Precision Training
How Low Can We Go: Trading Memory for Error in Low-Precision Training
Chengrun Yang
Ziyang Wu
Jerry Chee
Christopher De Sa
Madeleine Udell
18
2
0
17 Jun 2021
PositNN: Training Deep Neural Networks with Mixed Low-Precision Posit
PositNN: Training Deep Neural Networks with Mixed Low-Precision Posit
Gonçalo Raposo
P. Tomás
Nuno Roma
MQ
42
19
0
30 Apr 2021
Revisiting the Importance of Individual Units in CNNs via Ablation
Revisiting the Importance of Individual Units in CNNs via Ablation
Bolei Zhou
Yiyou Sun
David Bau
Antonio Torralba
FAtt
59
116
0
07 Jun 2018
1