ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1908.01797
44
13
v1v2 (latest)

Hybrid Camera Pose Estimation with Online Partitioning for SLAM

5 August 2019
Xinyi Li
Haibin Ling
ArXiv (abs)PDFHTML
Abstract

This paper presents a hybrid real-time camera pose estimation framework with a novel partitioning scheme and introduces motion averaging to monocular Simultaneous Localization and Mapping (SLAM) systems. Breaking through the limitations of fixed-size temporal partitioning in many conventional SLAM pipelines, our approach significantly improves the accuracy of local bundle adjustment by gathering spatially-strongly-connected cameras into each block. With the dynamic initialization using intermediate computation values, \XL{we improve the Levenberg-Marquardt solver to further enhance the efficiency of the local optimization.} Moreover, the dense data association between blocks by our co-visibility-based partitioning enables us to explore and implement motion averaging to efficiently align the blocks globally, updating camera motion estimations on-the-fly. Experiments on benchmarks convincingly demonstrate the practicality and robustness of our proposed approach by significantly outperforming conventional approaches.

View on arXiv
Comments on this paper