Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1908.00695
Cited By
Deep ReLU network approximation of functions on a manifold
2 August 2019
Johannes Schmidt-Hieber
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Deep ReLU network approximation of functions on a manifold"
27 / 27 papers shown
Title
Transformers for Learning on Noisy and Task-Level Manifolds: Approximation and Generalization Insights
Zhaiming Shen
Alex Havrilla
Rongjie Lai
A. Cloninger
Wenjing Liao
39
0
0
06 May 2025
Deep Transfer Learning: Model Framework and Error Analysis
Yuling Jiao
Huazhen Lin
Yuchen Luo
Jerry Zhijian Yang
49
1
0
12 Oct 2024
How DNNs break the Curse of Dimensionality: Compositionality and Symmetry Learning
Arthur Jacot
Seok Hoan Choi
Yuxiao Wen
AI4CE
94
2
0
08 Jul 2024
Posterior and variational inference for deep neural networks with heavy-tailed weights
Ismael Castillo
Paul Egels
BDL
60
4
0
05 Jun 2024
Approximation by non-symmetric networks for cross-domain learning
H. Mhaskar
43
1
0
06 May 2023
Deep Nonparametric Estimation of Intrinsic Data Structures by Chart Autoencoders: Generalization Error and Robustness
Hao Liu
Alex Havrilla
Rongjie Lai
Wenjing Liao
39
6
0
17 Mar 2023
Sparse-penalized deep neural networks estimator under weak dependence
William Kengne
Modou Wade
29
6
0
02 Mar 2023
Deep learning for
ψ
ψ
ψ
-weakly dependent processes
William Kengne
Wade Modou
AI4CE
22
1
0
01 Feb 2023
Local transfer learning from one data space to another
H. Mhaskar
Ryan O'Dowd
27
0
0
01 Feb 2023
Deep Operator Learning Lessens the Curse of Dimensionality for PDEs
Ke Chen
Chunmei Wang
Haizhao Yang
AI4CE
24
13
0
28 Jan 2023
Exploring the Approximation Capabilities of Multiplicative Neural Networks for Smooth Functions
Ido Ben-Shaul
Tomer Galanti
S. Dekel
33
3
0
11 Jan 2023
On the Geometry of Reinforcement Learning in Continuous State and Action Spaces
Saket Tiwari
Omer Gottesman
George Konidaris
29
0
0
29 Dec 2022
Effects of Data Geometry in Early Deep Learning
Saket Tiwari
George Konidaris
82
7
0
29 Dec 2022
A Review of Off-Policy Evaluation in Reinforcement Learning
Masatoshi Uehara
C. Shi
Nathan Kallus
OffRL
43
69
0
13 Dec 2022
Fitting an immersed submanifold to data via Sussmann's orbit theorem
Joshua Hanson
Maxim Raginsky
22
4
0
03 Apr 2022
Qualitative neural network approximation over R and C: Elementary proofs for analytic and polynomial activation
Josiah Park
Stephan Wojtowytsch
26
1
0
25 Mar 2022
Side Effects of Learning from Low-dimensional Data Embedded in a Euclidean Space
Juncai He
R. Tsai
Rachel A. Ward
46
8
0
01 Mar 2022
Deep Nonparametric Estimation of Operators between Infinite Dimensional Spaces
Hao Liu
Haizhao Yang
Minshuo Chen
T. Zhao
Wenjing Liao
32
36
0
01 Jan 2022
Drift estimation for a multi-dimensional diffusion process using deep neural networks
Akihiro Oga
Yuta Koike
DiffM
21
5
0
26 Dec 2021
A manifold learning approach for gesture recognition from micro-Doppler radar measurements
Eric Mason
H. Mhaskar
A. Guo
28
2
0
04 Oct 2021
Deep Networks Provably Classify Data on Curves
Tingran Wang
Sam Buchanan
D. Gilboa
John N. Wright
28
9
0
29 Jul 2021
Robust Nonparametric Regression with Deep Neural Networks
Guohao Shen
Yuling Jiao
Yuanyuan Lin
Jian Huang
OOD
33
13
0
21 Jul 2021
Estimation of a regression function on a manifold by fully connected deep neural networks
Michael Kohler
S. Langer
U. Reif
22
4
0
20 Jul 2021
Deep Nonparametric Regression on Approximate Manifolds: Non-Asymptotic Error Bounds with Polynomial Prefactors
Yuling Jiao
Guohao Shen
Yuanyuan Lin
Jian Huang
36
50
0
14 Apr 2021
The Kolmogorov-Arnold representation theorem revisited
Johannes Schmidt-Hieber
30
126
0
31 Jul 2020
Growing axons: greedy learning of neural networks with application to function approximation
Daria Fokina
Ivan Oseledets
24
18
0
28 Oct 2019
Benefits of depth in neural networks
Matus Telgarsky
179
604
0
14 Feb 2016
1