ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1908.00382
6
69

Cascaded Context Pyramid for Full-Resolution 3D Semantic Scene Completion

1 August 2019
Pingping Zhang
Wei Liu
Yinjie Lei
Huchuan Lu
Xiaoyun Yang
    3DV
    3DPC
ArXivPDFHTML
Abstract

Semantic Scene Completion (SSC) aims to simultaneously predict the volumetric occupancy and semantic category of a 3D scene. It helps intelligent devices to understand and interact with the surrounding scenes. Due to the high-memory requirement, current methods only produce low-resolution completion predictions, and generally lose the object details. Furthermore, they also ignore the multi-scale spatial contexts, which play a vital role for the 3D inference. To address these issues, in this work we propose a novel deep learning framework, named Cascaded Context Pyramid Network (CCPNet), to jointly infer the occupancy and semantic labels of a volumetric 3D scene from a single depth image. The proposed CCPNet improves the labeling coherence with a cascaded context pyramid. Meanwhile, based on the low-level features, it progressively restores the fine-structures of objects with Guided Residual Refinement (GRR) modules. Our proposed framework has three outstanding advantages: (1) it explicitly models the 3D spatial context for performance improvement; (2) full-resolution 3D volumes are produced with structure-preserving details; (3) light-weight models with low-memory requirements are captured with a good extensibility. Extensive experiments demonstrate that in spite of taking a single-view depth map, our proposed framework can generate high-quality SSC results, and outperforms state-of-the-art approaches on both the synthetic SUNCG and real NYU datasets.

View on arXiv
Comments on this paper