Papers
Communities
Organizations
Events
Blog
Pricing
Search
Open menu
Home
Papers
1908.00261
Cited By
v1
v2
v3
v4
v5 (latest)
On the Theory of Policy Gradient Methods: Optimality, Approximation, and Distribution Shift
1 August 2019
Alekh Agarwal
Sham Kakade
Jason D. Lee
G. Mahajan
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"On the Theory of Policy Gradient Methods: Optimality, Approximation, and Distribution Shift"
22 / 222 papers shown
Title
On the Convergence Theory of Debiased Model-Agnostic Meta-Reinforcement Learning
Alireza Fallah
Kristian Georgiev
Aryan Mokhtari
Asuman Ozdaglar
136
23
0
12 Feb 2020
Statistically Efficient Off-Policy Policy Gradients
Nathan Kallus
Masatoshi Uehara
OffRL
120
39
0
10 Feb 2020
Reward-Free Exploration for Reinforcement Learning
Chi Jin
A. Krishnamurthy
Max Simchowitz
Tiancheng Yu
OffRL
190
197
0
07 Feb 2020
Provably Efficient Reinforcement Learning with Aggregated States
Shi Dong
Benjamin Van Roy
Zhengyuan Zhou
59
32
0
13 Dec 2019
Provably Efficient Exploration in Policy Optimization
Qi Cai
Zhuoran Yang
Chi Jin
Zhaoran Wang
120
283
0
12 Dec 2019
A Finite-Time Analysis of Q-Learning with Neural Network Function Approximation
Pan Xu
Quanquan Gu
90
68
0
10 Dec 2019
Multi-Agent Reinforcement Learning: A Selective Overview of Theories and Algorithms
Jianchao Tan
Zhuoran Yang
Tamer Basar
285
1,233
0
24 Nov 2019
Safe Policies for Reinforcement Learning via Primal-Dual Methods
Santiago Paternain
Miguel Calvo-Fullana
Luiz F. O. Chamon
Alejandro Ribeiro
104
105
0
20 Nov 2019
Kinematic State Abstraction and Provably Efficient Rich-Observation Reinforcement Learning
Dipendra Kumar Misra
Mikael Henaff
A. Krishnamurthy
John Langford
106
151
0
13 Nov 2019
Policy Optimization for
H
2
\mathcal{H}_2
H
2
Linear Control with
H
∞
\mathcal{H}_\infty
H
∞
Robustness Guarantee: Implicit Regularization and Global Convergence
Jianchao Tan
Bin Hu
Tamer Basar
97
121
0
21 Oct 2019
On Connections between Constrained Optimization and Reinforcement Learning
Nino Vieillard
Olivier Pietquin
Matthieu Geist
52
13
0
18 Oct 2019
Model-free Reinforcement Learning in Infinite-horizon Average-reward Markov Decision Processes
Chen-Yu Wei
Mehdi Jafarnia-Jahromi
Haipeng Luo
Hiteshi Sharma
R. Jain
182
108
0
15 Oct 2019
Is a Good Representation Sufficient for Sample Efficient Reinforcement Learning?
S. Du
Sham Kakade
Ruosong Wang
Lin F. Yang
260
193
0
07 Oct 2019
Adaptive Trust Region Policy Optimization: Global Convergence and Faster Rates for Regularized MDPs
Lior Shani
Yonathan Efroni
Shie Mannor
106
176
0
06 Sep 2019
Neural Policy Gradient Methods: Global Optimality and Rates of Convergence
Lingxiao Wang
Qi Cai
Zhuoran Yang
Zhaoran Wang
121
242
0
29 Aug 2019
A Review of Cooperative Multi-Agent Deep Reinforcement Learning
Afshin Oroojlooyjadid
Davood Hajinezhad
126
439
0
11 Aug 2019
Policy Optimization with Stochastic Mirror Descent
Long Yang
Yu Zhang
Gang Zheng
Qian Zheng
Pengfei Li
Jianhang Huang
Jun Wen
Gang Pan
133
34
0
25 Jun 2019
Neural Proximal/Trust Region Policy Optimization Attains Globally Optimal Policy
Boyi Liu
Qi Cai
Zhuoran Yang
Zhaoran Wang
118
111
0
25 Jun 2019
Global Convergence of Policy Gradient Methods to (Almost) Locally Optimal Policies
Jianchao Tan
Alec Koppel
Haoqi Zhu
Tamer Basar
122
191
0
19 Jun 2019
Global Optimality Guarantees For Policy Gradient Methods
Jalaj Bhandari
Daniel Russo
140
193
0
05 Jun 2019
Policy Search by Target Distribution Learning for Continuous Control
Wei Shen
Yuanqi Li
Jian Li
75
6
0
27 May 2019
Smoothing Policies and Safe Policy Gradients
Matteo Papini
Matteo Pirotta
Marcello Restelli
80
31
0
08 May 2019
Previous
1
2
3
4
5