Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1907.12138
Cited By
Are Odds Really Odd? Bypassing Statistical Detection of Adversarial Examples
28 July 2019
Hossein Hosseini
Sreeram Kannan
Radha Poovendran
AAML
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Are Odds Really Odd? Bypassing Statistical Detection of Adversarial Examples"
7 / 7 papers shown
Title
DNNShield: Dynamic Randomized Model Sparsification, A Defense Against Adversarial Machine Learning
Mohammad Hossein Samavatian
Saikat Majumdar
Kristin Barber
R. Teodorescu
AAML
30
2
0
31 Jul 2022
Exact Feature Collisions in Neural Networks
Utku Ozbulak
Manvel Gasparyan
Shodhan Rao
W. D. Neve
Arnout Van Messem
AAML
34
1
0
31 May 2022
Towards Feature Space Adversarial Attack
Qiuling Xu
Guanhong Tao
Shuyang Cheng
Xinming Zhang
GAN
AAML
25
25
0
26 Apr 2020
On Adaptive Attacks to Adversarial Example Defenses
Florian Tramèr
Nicholas Carlini
Wieland Brendel
Aleksander Madry
AAML
109
824
0
19 Feb 2020
Deflecting Adversarial Attacks
Yao Qin
Nicholas Frosst
Colin Raffel
G. Cottrell
Geoffrey E. Hinton
AAML
30
15
0
18 Feb 2020
Detecting and Diagnosing Adversarial Images with Class-Conditional Capsule Reconstructions
Yao Qin
Nicholas Frosst
S. Sabour
Colin Raffel
G. Cottrell
Geoffrey E. Hinton
GAN
AAML
27
71
0
05 Jul 2019
Adversarial Machine Learning at Scale
Alexey Kurakin
Ian Goodfellow
Samy Bengio
AAML
314
3,115
0
04 Nov 2016
1