Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1907.10903
Cited By
DropEdge: Towards Deep Graph Convolutional Networks on Node Classification
25 July 2019
Yu Rong
Wenbing Huang
Tingyang Xu
Junzhou Huang
Re-assign community
ArXiv
PDF
HTML
Papers citing
"DropEdge: Towards Deep Graph Convolutional Networks on Node Classification"
50 / 236 papers shown
Title
DropGNN: Random Dropouts Increase the Expressiveness of Graph Neural Networks
Pál András Papp
Karolis Martinkus
Lukas Faber
Roger Wattenhofer
GNN
28
139
0
11 Nov 2021
Graph Transplant: Node Saliency-Guided Graph Mixup with Local Structure Preservation
Joonhyung Park
Hajin Shim
Eunho Yang
79
49
0
10 Nov 2021
Cold Brew: Distilling Graph Node Representations with Incomplete or Missing Neighborhoods
Wenqing Zheng
Edward W. Huang
Nikhil S. Rao
S. Katariya
Zhangyang Wang
Karthik Subbian
32
62
0
08 Nov 2021
Improving Peer Assessment with Graph Convolutional Networks
Alireza A. Namanloo
Julie Thorpe
Amirali Salehi-Abari
GNN
25
2
0
04 Nov 2021
FedGraph: Federated Graph Learning with Intelligent Sampling
Fahao Chen
Peng Li
T. Miyazaki
Celimuge Wu
FedML
24
78
0
02 Nov 2021
On Provable Benefits of Depth in Training Graph Convolutional Networks
Weilin Cong
M. Ramezani
M. Mahdavi
27
73
0
28 Oct 2021
Graph Posterior Network: Bayesian Predictive Uncertainty for Node Classification
Maximilian Stadler
Bertrand Charpentier
Simon Geisler
Daniel Zügner
Stephan Günnemann
UQCV
BDL
41
81
0
26 Oct 2021
Capsule Graph Neural Networks with EM Routing
Yu Lei
Jing Zhang
GNN
21
5
0
18 Oct 2021
Asymmetric Graph Representation Learning
Zhuo Tan
B. Liu
Guosheng Yin
24
1
0
14 Oct 2021
Which Samples Should be Learned First: Easy or Hard?
Xiaoling Zhou
Ou Wu
26
17
0
11 Oct 2021
Haar Wavelet Feature Compression for Quantized Graph Convolutional Networks
Moshe Eliasof
Ben Bodner
Eran Treister
GNN
35
7
0
10 Oct 2021
Towards Open-World Feature Extrapolation: An Inductive Graph Learning Approach
Qitian Wu
Chenxiao Yang
Junchi Yan
27
32
0
09 Oct 2021
Equivariant Subgraph Aggregation Networks
Beatrice Bevilacqua
Fabrizio Frasca
Derek Lim
Balasubramaniam Srinivasan
Chen Cai
G. Balamurugan
M. Bronstein
Haggai Maron
59
176
0
06 Oct 2021
Reconstruction for Powerful Graph Representations
Leonardo Cotta
Christopher Morris
Bruno Ribeiro
AI4CE
130
78
0
01 Oct 2021
Scalable deeper graph neural networks for high-performance materials property prediction
Sadman Sadeed Omee
Steph-Yves M. Louis
Nihang Fu
Lai Wei
Sourin Dey
Rongzhi Dong
Qinyang Li
Jianjun Hu
75
73
0
25 Sep 2021
Orthogonal Graph Neural Networks
Kai Guo
Kaixiong Zhou
Xia Hu
Yu Li
Yi Chang
Xin Wang
48
34
0
23 Sep 2021
Search For Deep Graph Neural Networks
Guosheng Feng
Chunnan Wang
Hongzhi Wang
GNN
32
23
0
21 Sep 2021
Local Augmentation for Graph Neural Networks
Songtao Liu
Rex Ying
Hanze Dong
Lanqing Li
Tingyang Xu
Yu Rong
P. Zhao
Junzhou Huang
Dinghao Wu
45
91
0
08 Sep 2021
HMSG: Heterogeneous Graph Neural Network based on Metapath Subgraph Learning
Xinjun Cai
Jiaxing Shang
Fei Hao
Dajiang Liu
Linjiang Zheng
29
19
0
07 Sep 2021
Layer-wise Adaptive Graph Convolution Networks Using Generalized Pagerank
Kishan Wimalawarne
Taiji Suzuki
GNN
22
2
0
24 Aug 2021
Bag of Tricks for Training Deeper Graph Neural Networks: A Comprehensive Benchmark Study
Tianlong Chen
Kaixiong Zhou
Keyu Duan
Wenqing Zheng
Peihao Wang
Xia Hu
Zhangyang Wang
AAML
GNN
27
61
0
24 Aug 2021
A Hard Label Black-box Adversarial Attack Against Graph Neural Networks
Jiaming Mu
Binghui Wang
Qi Li
Kun Sun
Mingwei Xu
Zhuotao Liu
AAML
23
34
0
21 Aug 2021
PDE-GCN: Novel Architectures for Graph Neural Networks Motivated by Partial Differential Equations
Moshe Eliasof
E. Haber
Eran Treister
GNN
AI4CE
39
123
0
04 Aug 2021
Evaluating Deep Graph Neural Networks
Wentao Zhang
Zeang Sheng
Yuezihan Jiang
Yikuan Xia
Jun Gao
Zhi-Xin Yang
Bin Cui
GNN
AI4CE
23
31
0
02 Aug 2021
Bridging the Gap between Spatial and Spectral Domains: A Unified Framework for Graph Neural Networks
Zhiqian Chen
Fanglan Chen
Lei Zhang
Taoran Ji
Kaiqun Fu
Liang Zhao
Feng Chen
Lingfei Wu
Charu C. Aggarwal
Chang-Tien Lu
53
18
0
21 Jul 2021
Large-scale graph representation learning with very deep GNNs and self-supervision
Ravichandra Addanki
Peter W. Battaglia
David Budden
Andreea Deac
Jonathan Godwin
...
Wai Lok Sibon Li
Alvaro Sanchez-Gonzalez
Jacklynn Stott
S. Thakoor
Petar Velivcković
SSL
AI4CE
27
25
0
20 Jul 2021
Graph Jigsaw Learning for Cartoon Face Recognition
Yong Li
Lingjie Lao
Zhen Cui
Shiguang Shan
Jian Yang
CVBM
32
14
0
14 Jul 2021
SelfCF: A Simple Framework for Self-supervised Collaborative Filtering
Xin Zhou
Aixin Sun
Yong-jin Liu
Jie Zhang
Chunyan Miao
SSL
29
77
0
07 Jul 2021
Dirichlet Energy Constrained Learning for Deep Graph Neural Networks
Kaixiong Zhou
Xiao Shi Huang
Daochen Zha
Rui Chen
Li Li
Soo-Hyun Choi
Xia Hu
GNN
AI4CE
38
114
0
06 Jul 2021
Curvature Graph Neural Network
Haifeng Li
Jun Cao
Jiawei Zhu
Yu Liu
Qing Zhu
Guohua Wu
21
49
0
30 Jun 2021
You are AllSet: A Multiset Function Framework for Hypergraph Neural Networks
Eli Chien
Chao Pan
Jianhao Peng
O. Milenkovic
GNN
49
128
0
24 Jun 2021
Training Graph Neural Networks with 1000 Layers
Guohao Li
Matthias Muller
Guohao Li
V. Koltun
GNN
AI4CE
51
235
0
14 Jun 2021
Learning from Counterfactual Links for Link Prediction
Tong Zhao
Gang Liu
Daheng Wang
Wenhao Yu
Meng Jiang
CML
OOD
33
93
0
03 Jun 2021
How Attentive are Graph Attention Networks?
Shaked Brody
Uri Alon
Eran Yahav
GNN
60
1,019
0
30 May 2021
Improving Graph Neural Networks with Simple Architecture Design
S. Maurya
Xin Liu
T. Murata
26
47
0
17 May 2021
Node Embedding using Mutual Information and Self-Supervision based Bi-level Aggregation
Kashob Kumar Roy
Amit Roy
A. Rahman
M. A. Amin
A. Ali
SSL
24
10
0
27 Apr 2021
Do We Need Anisotropic Graph Neural Networks?
Shyam A. Tailor
Felix L. Opolka
Pietro Lio
Nicholas D. Lane
46
34
0
03 Apr 2021
Bayesian Graph Convolutional Network for Traffic Prediction
Jun Fu
Wei Zhou
Zhibo Chen
GNN
BDL
18
8
0
01 Apr 2021
Graph Neural Networks Inspired by Classical Iterative Algorithms
Yongyi Yang
T. Liu
Yangkun Wang
Jinjing Zhou
Quan Gan
Zhewei Wei
Zheng-Wei Zhang
Zengfeng Huang
David Wipf
39
83
0
10 Mar 2021
Sampling methods for efficient training of graph convolutional networks: A survey
Xin Liu
Yurui Lai
Lei Deng
Guoqi Li
Xiaochun Ye
Xiaochun Ye
GNN
29
100
0
10 Mar 2021
Dissecting the Diffusion Process in Linear Graph Convolutional Networks
Yifei Wang
Yisen Wang
Jiansheng Yang
Zhouchen Lin
GNN
44
79
0
22 Feb 2021
A Deep Graph Wavelet Convolutional Neural Network for Semi-supervised Node Classification
Jingyi Wang
Zhidong Deng
GNN
21
11
0
19 Feb 2021
NODE-SELECT: A Graph Neural Network Based On A Selective Propagation Technique
Steph-Yves M. Louis
Alireza Nasiri
Fatima J. Rolland
Cameron Mitro
Jianjun Hu
71
9
0
17 Feb 2021
Large-Scale Representation Learning on Graphs via Bootstrapping
S. Thakoor
Corentin Tallec
M. G. Azar
Mehdi Azabou
Eva L. Dyer
Rémi Munos
Petar Velivcković
Michal Valko
SSL
29
217
0
12 Feb 2021
Two Sides of the Same Coin: Heterophily and Oversmoothing in Graph Convolutional Neural Networks
Yujun Yan
Milad Hashemi
Kevin Swersky
Yaoqing Yang
Danai Koutra
36
249
0
12 Feb 2021
Interpreting and Unifying Graph Neural Networks with An Optimization Framework
Meiqi Zhu
Xiao Wang
C. Shi
Houye Ji
Peng Cui
AI4CE
54
198
0
28 Jan 2021
Graph Neural Networks: Taxonomy, Advances and Trends
Yu Zhou
Haixia Zheng
Xin Huang
Shufeng Hao
Dengao Li
Jumin Zhao
AI4TS
25
117
0
16 Dec 2020
Hierarchical Graph Capsule Network
Jinyu Yang
P. Zhao
Yu Rong
Chao-chao Yan
Chunyuan Li
Hehuan Ma
Junzhou Huang
24
30
0
16 Dec 2020
NCGNN: Node-Level Capsule Graph Neural Network for Semisupervised Classification
Rui Yang
Wenrui Dai
Chenglin Li
Junni Zou
H. Xiong
28
20
0
07 Dec 2020
Unsupervised Adversarially-Robust Representation Learning on Graphs
Jiarong Xu
Yang Yang
Junru Chen
Chunping Wang
Xin Jiang
Jiangang Lu
Yizhou Sun
SSL
AAML
OOD
35
36
0
04 Dec 2020
Previous
1
2
3
4
5
Next