ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1907.10882
  4. Cited By
Interpretability Beyond Classification Output: Semantic Bottleneck
  Networks

Interpretability Beyond Classification Output: Semantic Bottleneck Networks

25 July 2019
M. Losch
Mario Fritz
Bernt Schiele
    UQCV
ArXivPDFHTML

Papers citing "Interpretability Beyond Classification Output: Semantic Bottleneck Networks"

23 / 23 papers shown
Title
Show and Tell: Visually Explainable Deep Neural Nets via Spatially-Aware Concept Bottleneck Models
Show and Tell: Visually Explainable Deep Neural Nets via Spatially-Aware Concept Bottleneck Models
Itay Benou
Tammy Riklin-Raviv
67
0
0
27 Feb 2025
COMIX: Compositional Explanations using Prototypes
COMIX: Compositional Explanations using Prototypes
S. Sivaprasad
D. Kangin
Plamen Angelov
Mario Fritz
145
0
0
10 Jan 2025
Image-guided topic modeling for interpretable privacy classification
Image-guided topic modeling for interpretable privacy classification
Alina Elena Baia
Andrea Cavallaro
42
0
0
27 Sep 2024
Multi-Scale Grouped Prototypes for Interpretable Semantic Segmentation
Multi-Scale Grouped Prototypes for Interpretable Semantic Segmentation
Hugo Porta
Emanuele Dalsasso
Diego Marcos
D. Tuia
95
0
0
14 Sep 2024
DEPICT: Diffusion-Enabled Permutation Importance for Image
  Classification Tasks
DEPICT: Diffusion-Enabled Permutation Importance for Image Classification Tasks
Sarah Jabbour
Gregory Kondas
Ella Kazerooni
Michael Sjoding
David Fouhey
Jenna Wiens
FAtt
DiffM
47
1
0
19 Jul 2024
Automated Molecular Concept Generation and Labeling with Large Language
  Models
Automated Molecular Concept Generation and Labeling with Large Language Models
Shichang Zhang
Botao Xia
Zimin Zhang
Qianli Wu
Fang Sun
Ziniu Hu
Yizhou Sun
43
0
0
13 Jun 2024
Understanding Multimodal Deep Neural Networks: A Concept Selection View
Understanding Multimodal Deep Neural Networks: A Concept Selection View
Chenming Shang
Hengyuan Zhang
Hao Wen
Yujiu Yang
43
5
0
13 Apr 2024
Sparse Concept Bottleneck Models: Gumbel Tricks in Contrastive Learning
Sparse Concept Bottleneck Models: Gumbel Tricks in Contrastive Learning
Andrei Semenov
Vladimir Ivanov
Aleksandr Beznosikov
Alexander Gasnikov
37
6
0
04 Apr 2024
Interpreting Pretrained Language Models via Concept Bottlenecks
Interpreting Pretrained Language Models via Concept Bottlenecks
Zhen Tan
Lu Cheng
Song Wang
Yuan Bo
Jundong Li
Huan Liu
LRM
32
20
0
08 Nov 2023
Editable User Profiles for Controllable Text Recommendation
Editable User Profiles for Controllable Text Recommendation
Sheshera Mysore
Mahmood Jasim
Andrew McCallum
Hamed Zamani
15
15
0
09 Apr 2023
Concept Learning for Interpretable Multi-Agent Reinforcement Learning
Concept Learning for Interpretable Multi-Agent Reinforcement Learning
Renos Zabounidis
Joseph Campbell
Simon Stepputtis
Dana Hughes
Katia P. Sycara
31
15
0
23 Feb 2023
Hierarchical Explanations for Video Action Recognition
Hierarchical Explanations for Video Action Recognition
Sadaf Gulshad
Teng Long
N. V. Noord
FAtt
18
6
0
01 Jan 2023
GlanceNets: Interpretabile, Leak-proof Concept-based Models
GlanceNets: Interpretabile, Leak-proof Concept-based Models
Emanuele Marconato
Andrea Passerini
Stefano Teso
106
64
0
31 May 2022
Concept Embedding Analysis: A Review
Concept Embedding Analysis: A Review
Gesina Schwalbe
32
28
0
25 Mar 2022
Editing a classifier by rewriting its prediction rules
Editing a classifier by rewriting its prediction rules
Shibani Santurkar
Dimitris Tsipras
Mahalaxmi Elango
David Bau
Antonio Torralba
A. Madry
KELM
177
89
0
02 Dec 2021
Image Classification with Consistent Supporting Evidence
Image Classification with Consistent Supporting Evidence
Peiqi Wang
Ruizhi Liao
Daniel Moyer
Seth Berkowitz
Steven Horng
Polina Golland
34
2
0
13 Nov 2021
Toward a Unified Framework for Debugging Concept-based Models
Toward a Unified Framework for Debugging Concept-based Models
A. Bontempelli
Fausto Giunchiglia
Andrea Passerini
Stefano Teso
20
4
0
23 Sep 2021
Promises and Pitfalls of Black-Box Concept Learning Models
Promises and Pitfalls of Black-Box Concept Learning Models
Anita Mahinpei
Justin Clark
Isaac Lage
Finale Doshi-Velez
Weiwei Pan
31
91
0
24 Jun 2021
A Comprehensive Taxonomy for Explainable Artificial Intelligence: A
  Systematic Survey of Surveys on Methods and Concepts
A Comprehensive Taxonomy for Explainable Artificial Intelligence: A Systematic Survey of Surveys on Methods and Concepts
Gesina Schwalbe
Bettina Finzel
XAI
26
184
0
15 May 2021
Towards a Collective Agenda on AI for Earth Science Data Analysis
Towards a Collective Agenda on AI for Earth Science Data Analysis
D. Tuia
R. Roscher
Jan Dirk Wegner
Nathan Jacobs
Xiaoxiang Zhu
Gustau Camps-Valls
AI4CE
39
68
0
11 Apr 2021
Interpretable Machine Learning: Fundamental Principles and 10 Grand
  Challenges
Interpretable Machine Learning: Fundamental Principles and 10 Grand Challenges
Cynthia Rudin
Chaofan Chen
Zhi Chen
Haiyang Huang
Lesia Semenova
Chudi Zhong
FaML
AI4CE
LRM
59
653
0
20 Mar 2021
Debiasing Concept-based Explanations with Causal Analysis
Debiasing Concept-based Explanations with Causal Analysis
M. T. Bahadori
David Heckerman
FAtt
CML
11
38
0
22 Jul 2020
Adversarial examples in the physical world
Adversarial examples in the physical world
Alexey Kurakin
Ian Goodfellow
Samy Bengio
SILM
AAML
287
5,835
0
08 Jul 2016
1