Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1907.09356
Cited By
Decentralized Deep Learning with Arbitrary Communication Compression
22 July 2019
Anastasia Koloskova
Tao R. Lin
Sebastian U. Stich
Martin Jaggi
FedML
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Decentralized Deep Learning with Arbitrary Communication Compression"
50 / 61 papers shown
Title
Dyn-D
2
^2
2
P: Dynamic Differentially Private Decentralized Learning with Provable Utility Guarantee
Zehan Zhu
Yan Huang
Xin Wang
Shouling Ji
Jinming Xu
26
0
0
10 May 2025
Communication Optimization for Decentralized Learning atop Bandwidth-limited Edge Networks
Tingyang Sun
Tuan Nguyen
Ting He
35
0
0
16 Apr 2025
Accelerated Distributed Optimization with Compression and Error Feedback
Yuan Gao
Anton Rodomanov
Jeremy Rack
Sebastian U. Stich
49
0
0
11 Mar 2025
Scalable Decentralized Learning with Teleportation
Yuki Takezawa
Sebastian U. Stich
61
1
0
25 Jan 2025
Fully First-Order Methods for Decentralized Bilevel Optimization
Xiaoyu Wang
Xuxing Chen
Shiqian Ma
Tong Zhang
38
0
0
25 Oct 2024
SADDLe: Sharpness-Aware Decentralized Deep Learning with Heterogeneous Data
Sakshi Choudhary
Sai Aparna Aketi
Kaushik Roy
FedML
45
0
0
22 May 2024
Scale-Robust Timely Asynchronous Decentralized Learning
Purbesh Mitra
S. Ulukus
17
1
0
30 Apr 2024
Convergence of Decentralized Stochastic Subgradient-based Methods for Nonsmooth Nonconvex functions
Siyuan Zhang
Nachuan Xiao
Xin Liu
61
1
0
18 Mar 2024
Averaging Rate Scheduler for Decentralized Learning on Heterogeneous Data
Sai Aparna Aketi
Sakshi Choudhary
Kaushik Roy
32
1
0
05 Mar 2024
Communication-Efficient Federated Optimization over Semi-Decentralized Networks
He Wang
Yuejie Chi
FedML
26
2
0
30 Nov 2023
Compressed and Sparse Models for Non-Convex Decentralized Learning
Andrew Campbell
Hang Liu
Leah Woldemariam
Anna Scaglione
20
0
0
09 Nov 2023
Stability and Generalization of the Decentralized Stochastic Gradient Descent Ascent Algorithm
Miaoxi Zhu
Li Shen
Bo Du
Dacheng Tao
23
6
0
31 Oct 2023
Federated Multi-Level Optimization over Decentralized Networks
Shuoguang Yang
Xuezhou Zhang
Mengdi Wang
AI4CE
28
0
0
10 Oct 2023
Achieving Linear Speedup in Decentralized Stochastic Compositional Minimax Optimization
Hongchang Gao
34
1
0
25 Jul 2023
Get More for Less in Decentralized Learning Systems
Akash Dhasade
Anne-Marie Kermarrec
Rafael Pires
Rishi Sharma
Milos Vujasinovic
Jeffrey Wigger
26
7
0
07 Jun 2023
Error Feedback Shines when Features are Rare
Peter Richtárik
Elnur Gasanov
Konstantin Burlachenko
28
2
0
24 May 2023
Beyond Exponential Graph: Communication-Efficient Topologies for Decentralized Learning via Finite-time Convergence
Yuki Takezawa
Ryoma Sato
Han Bao
Kenta Niwa
M. Yamada
31
9
0
19 May 2023
Homogenizing Non-IID datasets via In-Distribution Knowledge Distillation for Decentralized Learning
Deepak Ravikumar
Gobinda Saha
Sai Aparna Aketi
Kaushik Roy
18
1
0
09 Apr 2023
CoDeC: Communication-Efficient Decentralized Continual Learning
Sakshi Choudhary
Sai Aparna Aketi
Gobinda Saha
Kaushik Roy
CLL
47
3
0
27 Mar 2023
Gossiped and Quantized Online Multi-Kernel Learning
Tomàs Ortega
Hamid Jafarkhani
27
5
0
24 Jan 2023
CEDAS: A Compressed Decentralized Stochastic Gradient Method with Improved Convergence
Kun-Yen Huang
Shin-Yi Pu
30
9
0
14 Jan 2023
Decentralized Stochastic Gradient Descent Ascent for Finite-Sum Minimax Problems
Hongchang Gao
24
16
0
06 Dec 2022
PersA-FL: Personalized Asynchronous Federated Learning
Taha Toghani
Soomin Lee
César A. Uribe
FedML
34
6
0
03 Oct 2022
Unbounded Gradients in Federated Learning with Buffered Asynchronous Aggregation
Taha Toghani
César A. Uribe
FedML
35
14
0
03 Oct 2022
On Generalization of Decentralized Learning with Separable Data
Hossein Taheri
Christos Thrampoulidis
FedML
27
10
0
15 Sep 2022
Decentralized Gossip-Based Stochastic Bilevel Optimization over Communication Networks
Shuoguang Yang
Xuezhou Zhang
Mengdi Wang
37
42
0
22 Jun 2022
Communication-Efficient Distributionally Robust Decentralized Learning
Matteo Zecchin
Marios Kountouris
David Gesbert
22
9
0
31 May 2022
Data-heterogeneity-aware Mixing for Decentralized Learning
Yatin Dandi
Anastasia Koloskova
Martin Jaggi
Sebastian U. Stich
38
18
0
13 Apr 2022
Maximizing Communication Efficiency for Large-scale Training via 0/1 Adam
Yucheng Lu
Conglong Li
Minjia Zhang
Christopher De Sa
Yuxiong He
OffRL
AI4CE
24
20
0
12 Feb 2022
Asynchronous Decentralized Learning over Unreliable Wireless Networks
Eunjeong Jeong
Matteo Zecchin
Marios Kountouris
19
16
0
02 Feb 2022
BEER: Fast
O
(
1
/
T
)
O(1/T)
O
(
1/
T
)
Rate for Decentralized Nonconvex Optimization with Communication Compression
Haoyu Zhao
Boyue Li
Zhize Li
Peter Richtárik
Yuejie Chi
24
48
0
31 Jan 2022
Distributed Adaptive Learning Under Communication Constraints
Marco Carpentiero
Vincenzo Matta
Ali H. Sayed
29
17
0
03 Dec 2021
Exponential Graph is Provably Efficient for Decentralized Deep Training
Bicheng Ying
Kun Yuan
Yiming Chen
Hanbin Hu
Pan Pan
W. Yin
FedML
39
83
0
26 Oct 2021
DiNNO: Distributed Neural Network Optimization for Multi-Robot Collaborative Learning
Javier Yu
Joseph A. Vincent
Mac Schwager
46
35
0
17 Sep 2021
Decentralized Composite Optimization with Compression
Yao Li
Xiaorui Liu
Jiliang Tang
Ming Yan
Kun Yuan
19
9
0
10 Aug 2021
Communication Efficiency in Federated Learning: Achievements and Challenges
Osama Shahid
Seyedamin Pouriyeh
R. Parizi
Quan Z. Sheng
Gautam Srivastava
Liang Zhao
FedML
40
74
0
23 Jul 2021
Secure Distributed Training at Scale
Eduard A. Gorbunov
Alexander Borzunov
Michael Diskin
Max Ryabinin
FedML
21
15
0
21 Jun 2021
Moshpit SGD: Communication-Efficient Decentralized Training on Heterogeneous Unreliable Devices
Max Ryabinin
Eduard A. Gorbunov
Vsevolod Plokhotnyuk
Gennady Pekhimenko
35
32
0
04 Mar 2021
On the Utility of Gradient Compression in Distributed Training Systems
Saurabh Agarwal
Hongyi Wang
Shivaram Venkataraman
Dimitris Papailiopoulos
31
46
0
28 Feb 2021
IntSGD: Adaptive Floatless Compression of Stochastic Gradients
Konstantin Mishchenko
Bokun Wang
D. Kovalev
Peter Richtárik
69
14
0
16 Feb 2021
MARINA: Faster Non-Convex Distributed Learning with Compression
Eduard A. Gorbunov
Konstantin Burlachenko
Zhize Li
Peter Richtárik
39
109
0
15 Feb 2021
Communication-efficient Distributed Cooperative Learning with Compressed Beliefs
Taha Toghani
César A. Uribe
22
15
0
14 Feb 2021
Sparse-Push: Communication- & Energy-Efficient Decentralized Distributed Learning over Directed & Time-Varying Graphs with non-IID Datasets
Sai Aparna Aketi
Amandeep Singh
J. Rabaey
21
10
0
10 Feb 2021
Consensus Control for Decentralized Deep Learning
Lingjing Kong
Tao R. Lin
Anastasia Koloskova
Martin Jaggi
Sebastian U. Stich
19
75
0
09 Feb 2021
1-bit Adam: Communication Efficient Large-Scale Training with Adam's Convergence Speed
Hanlin Tang
Shaoduo Gan
A. A. Awan
Samyam Rajbhandari
Conglong Li
Xiangru Lian
Ji Liu
Ce Zhang
Yuxiong He
AI4CE
37
84
0
04 Feb 2021
Federated Learning over Wireless Device-to-Device Networks: Algorithms and Convergence Analysis
Hong Xing
Osvaldo Simeone
Suzhi Bi
42
92
0
29 Jan 2021
Optimising cost vs accuracy of decentralised analytics in fog computing environments
Lorenzo Valerio
A. Passarella
M. Conti
27
1
0
09 Dec 2020
On the Benefits of Multiple Gossip Steps in Communication-Constrained Decentralized Optimization
Abolfazl Hashemi
Anish Acharya
Rudrajit Das
H. Vikalo
Sujay Sanghavi
Inderjit Dhillon
17
7
0
20 Nov 2020
Communication Efficient Distributed Learning with Censored, Quantized, and Generalized Group ADMM
Chaouki Ben Issaid
Anis Elgabli
Jihong Park
M. Bennis
Mérouane Debbah
FedML
31
13
0
14 Sep 2020
On Communication Compression for Distributed Optimization on Heterogeneous Data
Sebastian U. Stich
47
22
0
04 Sep 2020
1
2
Next