ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1907.09350
  4. Cited By

Efficient Policy Learning for Non-Stationary MDPs under Adversarial Manipulation

22 July 2019
Tiancheng Yu
S. Sra
    AAML
ArXivPDFHTML

Papers citing "Efficient Policy Learning for Non-Stationary MDPs under Adversarial Manipulation"

2 / 2 papers shown
Title
When Are Linear Stochastic Bandits Attackable?
When Are Linear Stochastic Bandits Attackable?
Huazheng Wang
Haifeng Xu
Hongning Wang
AAML
37
10
0
18 Oct 2021
Bounded regret in stochastic multi-armed bandits
Bounded regret in stochastic multi-armed bandits
Sébastien Bubeck
Vianney Perchet
Philippe Rigollet
71
91
0
06 Feb 2013
1