ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1907.08982
  4. Cited By
Noise Regularization for Conditional Density Estimation

Noise Regularization for Conditional Density Estimation

21 July 2019
Jonas Rothfuss
Fabio Ferreira
S. Boehm
Simon Walther
Maxim Ulrich
Tamim Asfour
Andreas Krause
ArXivPDFHTML

Papers citing "Noise Regularization for Conditional Density Estimation"

8 / 8 papers shown
Title
Quantifying Aleatoric Uncertainty of the Treatment Effect: A Novel Orthogonal Learner
Quantifying Aleatoric Uncertainty of the Treatment Effect: A Novel Orthogonal Learner
Valentyn Melnychuk
Stefan Feuerriegel
Mihaela van der Schaar
CML
61
3
0
05 Nov 2024
Bounds on Representation-Induced Confounding Bias for Treatment Effect
  Estimation
Bounds on Representation-Induced Confounding Bias for Treatment Effect Estimation
Valentyn Melnychuk
Dennis Frauen
Stefan Feuerriegel
CML
37
9
0
19 Nov 2023
IL-flOw: Imitation Learning from Observation using Normalizing Flows
IL-flOw: Imitation Learning from Observation using Normalizing Flows
Wei-Di Chang
J. A. G. Higuera
Scott Fujimoto
David Meger
Gregory Dudek
38
9
0
19 May 2022
Short-Term Density Forecasting of Low-Voltage Load using
  Bernstein-Polynomial Normalizing Flows
Short-Term Density Forecasting of Low-Voltage Load using Bernstein-Polynomial Normalizing Flows
M. Arpogaus
Marcus Voss
Beate Sick
Mark Nigge-Uricher
Oliver Durr
33
16
0
29 Apr 2022
Multi-Asset Spot and Option Market Simulation
Multi-Asset Spot and Option Market Simulation
Magnus Wiese
Ben Wood
Alexandre Pachoud
R. Korn
Hans Buehler
Phillip Murray
Lianjun Bai
32
21
0
13 Dec 2021
CLIP-Forge: Towards Zero-Shot Text-to-Shape Generation
CLIP-Forge: Towards Zero-Shot Text-to-Shape Generation
Aditya Sanghi
Hang Chu
Joseph G. Lambourne
Ye Wang
Chin-Yi Cheng
Marco Fumero
Kamal Rahimi Malekshan
CLIP
60
289
0
06 Oct 2021
Meta-Learning Reliable Priors in the Function Space
Meta-Learning Reliable Priors in the Function Space
Jonas Rothfuss
Dominique Heyn
Jinfan Chen
Andreas Krause
42
27
0
06 Jun 2021
Dropout as a Bayesian Approximation: Representing Model Uncertainty in
  Deep Learning
Dropout as a Bayesian Approximation: Representing Model Uncertainty in Deep Learning
Y. Gal
Zoubin Ghahramani
UQCV
BDL
287
9,167
0
06 Jun 2015
1