ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1907.08592
  4. Cited By
Kernel Mode Decomposition and programmable/interpretable regression
  networks
v1v2 (latest)

Kernel Mode Decomposition and programmable/interpretable regression networks

19 July 2019
H. Owhadi
C. Scovel
G. Yoo
ArXiv (abs)PDFHTML

Papers citing "Kernel Mode Decomposition and programmable/interpretable regression networks"

15 / 15 papers shown
Title
Learning dynamical systems from data: a simple cross-validation
  perspective
Learning dynamical systems from data: a simple cross-validation perspective
B. Hamzi
H. Owhadi
66
41
0
09 Jul 2020
Machine Learning of Linear Differential Equations using Gaussian
  Processes
Machine Learning of Linear Differential Equations using Gaussian Processes
M. Raissi
George Karniadakis
83
553
0
10 Jan 2017
A Probabilistic Framework for Deep Learning
A Probabilistic Framework for Deep Learning
Ankit B. Patel
M. T. Nguyen
Richard G. Baraniuk
BDL
115
68
0
06 Dec 2016
Variational Fourier features for Gaussian processes
Variational Fourier features for Gaussian processes
J. Hensman
N. Durrande
Arno Solin
VLM
75
202
0
21 Nov 2016
Wave-shape function analysis -- when cepstrum meets time-frequency
  analysis
Wave-shape function analysis -- when cepstrum meets time-frequency analysis
Chen-Yun Lin
Su Li
Hau‐Tieng Wu
55
56
0
06 May 2016
Functional additive regression
Functional additive regression
Yingying Fan
Gareth M. James
P. Radchenko
73
138
0
14 Oct 2015
Multigrid with rough coefficients and Multiresolution operator
  decomposition from Hierarchical Information Games
Multigrid with rough coefficients and Multiresolution operator decomposition from Hierarchical Information Games
H. Owhadi
62
169
0
11 Mar 2015
Scalable Variational Gaussian Process Classification
Scalable Variational Gaussian Process Classification
J. Hensman
A. G. Matthews
Zoubin Ghahramani
BDL
81
646
0
07 Nov 2014
Gaussian Processes for Big Data
Gaussian Processes for Big Data
J. Hensman
Nicolò Fusi
Neil D. Lawrence
GP
113
1,237
0
26 Sep 2013
Gaussian process models for periodicity detection
Gaussian process models for periodicity detection
N. Durrande
J. Hensman
M. Rattray
Neil D. Lawrence
47
17
0
28 Mar 2013
Stochastic Variational Inference
Stochastic Variational Inference
Matt Hoffman
David M. Blei
Chong-Jun Wang
John Paisley
BDL
277
2,628
0
29 Jun 2012
Additive Gaussian Processes
Additive Gaussian Processes
David Duvenaud
H. Nickisch
C. Rasmussen
GP
110
331
0
19 Dec 2011
Additive Covariance Kernels for High-Dimensional Gaussian Process
  Modeling
Additive Covariance Kernels for High-Dimensional Gaussian Process Modeling
N. Durrande
D. Ginsbourger
O. Roustant
L. Carraro
96
102
0
27 Nov 2011
Kernels for Vector-Valued Functions: a Review
Kernels for Vector-Valued Functions: a Review
Mauricio A. Alvarez
Lorenzo Rosasco
Neil D. Lawrence
GP
218
930
0
30 Jun 2011
Additive Kernels for Gaussian Process Modeling
Additive Kernels for Gaussian Process Modeling
N. Durrande
D. Ginsbourger
O. Roustant
94
25
0
21 Mar 2011
1