Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1907.05587
Cited By
Stateful Detection of Black-Box Adversarial Attacks
12 July 2019
Steven Chen
Nicholas Carlini
D. Wagner
AAML
MLAU
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"Stateful Detection of Black-Box Adversarial Attacks"
35 / 35 papers shown
Title
SEA: Shareable and Explainable Attribution for Query-based Black-box Attacks
Yue Gao
Ilia Shumailov
Kassem Fawaz
AAML
217
0
0
21 Feb 2025
Energy-Latency Attacks via Sponge Poisoning
Antonio Emanuele Cinà
Ambra Demontis
Battista Biggio
Fabio Roli
Marcello Pelillo
SILM
140
31
0
14 Mar 2022
GeoDA: a geometric framework for black-box adversarial attacks
A. Rahmati
Seyed-Mohsen Moosavi-Dezfooli
P. Frossard
H. Dai
MLAU
AAML
134
120
0
13 Mar 2020
E-LPIPS: Robust Perceptual Image Similarity via Random Transformation Ensembles
M. Kettunen
Erik Härkönen
J. Lehtinen
AAML
63
63
0
10 Jun 2019
A geometry-inspired decision-based attack
Yujia Liu
Seyed-Mohsen Moosavi-Dezfooli
P. Frossard
AAML
77
54
0
26 Mar 2019
On Evaluating Adversarial Robustness
Nicholas Carlini
Anish Athalye
Nicolas Papernot
Wieland Brendel
Jonas Rauber
Dimitris Tsipras
Ian Goodfellow
Aleksander Madry
Alexey Kurakin
ELM
AAML
117
905
0
18 Feb 2019
Adversarial Examples Are a Natural Consequence of Test Error in Noise
Nic Ford
Justin Gilmer
Nicholas Carlini
E. D. Cubuk
AAML
118
320
0
29 Jan 2019
RED-Attack: Resource Efficient Decision based Attack for Machine Learning
Faiq Khalid
Hassan Ali
Muhammad Abdullah Hanif
Semeen Rehman
Rehan Ahmed
Mohamed Bennai
AAML
69
14
0
29 Jan 2019
Sitatapatra: Blocking the Transfer of Adversarial Samples
Ilia Shumailov
Xitong Gao
Yiren Zhao
Robert D. Mullins
Ross J. Anderson
Chengzhong Xu
AAML
GAN
56
14
0
23 Jan 2019
Guessing Smart: Biased Sampling for Efficient Black-Box Adversarial Attacks
T. Brunner
Frederik Diehl
Michael Truong-Le
Alois Knoll
MLAU
AAML
77
117
0
24 Dec 2018
Evaluating and Understanding the Robustness of Adversarial Logit Pairing
Logan Engstrom
Andrew Ilyas
Anish Athalye
AAML
73
141
0
26 Jul 2018
PRADA: Protecting against DNN Model Stealing Attacks
Mika Juuti
S. Szyller
Samuel Marchal
Nadarajah Asokan
SILM
AAML
84
444
0
07 May 2018
Black-box Adversarial Attacks with Limited Queries and Information
Andrew Ilyas
Logan Engstrom
Anish Athalye
Jessy Lin
MLAU
AAML
173
1,208
0
23 Apr 2018
On the Robustness of the CVPR 2018 White-Box Adversarial Example Defenses
Anish Athalye
Nicholas Carlini
AAML
77
170
0
10 Apr 2018
Adversarial Risk and the Dangers of Evaluating Against Weak Attacks
J. Uesato
Brendan O'Donoghue
Aaron van den Oord
Pushmeet Kohli
AAML
166
606
0
15 Feb 2018
Obfuscated Gradients Give a False Sense of Security: Circumventing Defenses to Adversarial Examples
Anish Athalye
Nicholas Carlini
D. Wagner
AAML
249
3,195
0
01 Feb 2018
Decision-Based Adversarial Attacks: Reliable Attacks Against Black-Box Machine Learning Models
Wieland Brendel
Jonas Rauber
Matthias Bethge
AAML
81
1,351
0
12 Dec 2017
Evasion Attacks against Machine Learning at Test Time
Battista Biggio
Igino Corona
Davide Maiorca
B. Nelson
Nedim Srndic
Pavel Laskov
Giorgio Giacinto
Fabio Roli
AAML
168
2,160
0
21 Aug 2017
Towards Deep Learning Models Resistant to Adversarial Attacks
Aleksander Madry
Aleksandar Makelov
Ludwig Schmidt
Dimitris Tsipras
Adrian Vladu
SILM
OOD
323
12,151
0
19 Jun 2017
Attention Is All You Need
Ashish Vaswani
Noam M. Shazeer
Niki Parmar
Jakob Uszkoreit
Llion Jones
Aidan Gomez
Lukasz Kaiser
Illia Polosukhin
3DV
827
132,725
0
12 Jun 2017
Adversarial Examples Are Not Easily Detected: Bypassing Ten Detection Methods
Nicholas Carlini
D. Wagner
AAML
131
1,867
0
20 May 2017
Ensemble Adversarial Training: Attacks and Defenses
Florian Tramèr
Alexey Kurakin
Nicolas Papernot
Ian Goodfellow
Dan Boneh
Patrick McDaniel
AAML
190
2,731
0
19 May 2017
Feature Squeezing: Detecting Adversarial Examples in Deep Neural Networks
Weilin Xu
David Evans
Yanjun Qi
AAML
100
1,275
0
04 Apr 2017
Detecting Adversarial Samples from Artifacts
Reuben Feinman
Ryan R. Curtin
S. Shintre
Andrew B. Gardner
AAML
111
894
0
01 Mar 2017
On the (Statistical) Detection of Adversarial Examples
Kathrin Grosse
Praveen Manoharan
Nicolas Papernot
Michael Backes
Patrick McDaniel
AAML
88
715
0
21 Feb 2017
On Detecting Adversarial Perturbations
J. H. Metzen
Tim Genewein
Volker Fischer
Bastian Bischoff
AAML
85
950
0
14 Feb 2017
YOLO9000: Better, Faster, Stronger
Joseph Redmon
Ali Farhadi
VLM
ObjD
183
15,660
0
25 Dec 2016
Stealing Machine Learning Models via Prediction APIs
Florian Tramèr
Fan Zhang
Ari Juels
Michael K. Reiter
Thomas Ristenpart
SILM
MLAU
113
1,813
0
09 Sep 2016
Towards Evaluating the Robustness of Neural Networks
Nicholas Carlini
D. Wagner
OOD
AAML
284
8,593
0
16 Aug 2016
Wide Residual Networks
Sergey Zagoruyko
N. Komodakis
362
8,005
0
23 May 2016
Deep Residual Learning for Image Recognition
Kaiming He
Xinming Zhang
Shaoqing Ren
Jian Sun
MedIm
2.3K
194,641
0
10 Dec 2015
Adam: A Method for Stochastic Optimization
Diederik P. Kingma
Jimmy Ba
ODL
2.2K
150,433
0
22 Dec 2014
Explaining and Harnessing Adversarial Examples
Ian Goodfellow
Jonathon Shlens
Christian Szegedy
AAML
GAN
284
19,145
0
20 Dec 2014
Generative Adversarial Networks
Ian Goodfellow
Jean Pouget-Abadie
M. Berk Mirza
Bing Xu
David Warde-Farley
Sherjil Ozair
Aaron Courville
Yoshua Bengio
GAN
150
2,198
0
10 Jun 2014
Intriguing properties of neural networks
Christian Szegedy
Wojciech Zaremba
Ilya Sutskever
Joan Bruna
D. Erhan
Ian Goodfellow
Rob Fergus
AAML
297
14,978
1
21 Dec 2013
1