ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1907.05310
  4. Cited By
Aerial Animal Biometrics: Individual Friesian Cattle Recovery and Visual
  Identification via an Autonomous UAV with Onboard Deep Inference

Aerial Animal Biometrics: Individual Friesian Cattle Recovery and Visual Identification via an Autonomous UAV with Onboard Deep Inference

11 July 2019
William Andrew
C. Greatwood
T. Burghardt
ArXivPDFHTML

Papers citing "Aerial Animal Biometrics: Individual Friesian Cattle Recovery and Visual Identification via an Autonomous UAV with Onboard Deep Inference"

6 / 6 papers shown
Title
WildLive: Near Real-time Visual Wildlife Tracking onboard UAVs
WildLive: Near Real-time Visual Wildlife Tracking onboard UAVs
Nguyen Ngoc Dat
Tom Richardson
Matthew Watson
Kilian Meier
Jenna Kline
Sid Reid
Guy Maalouf
Duncan Hine
Majid Mirmehdi
T. Burghardt
36
0
0
14 Apr 2025
Public Computer Vision Datasets for Precision Livestock Farming: A
  Systematic Survey
Public Computer Vision Datasets for Precision Livestock Farming: A Systematic Survey
Anil Bhujel
Yibin Wang
Yuzhen Lu
Daniel Morris
Mukesh Dangol
45
2
0
15 Jun 2024
Real-time Aerial Detection and Reasoning on Embedded-UAVs
Real-time Aerial Detection and Reasoning on Embedded-UAVs
Tin Lai
AI4TS
24
6
0
21 May 2023
Automatic Cattle Identification using YOLOv5 and Mosaic Augmentation: A
  Comparative Analysis
Automatic Cattle Identification using YOLOv5 and Mosaic Augmentation: A Comparative Analysis
Rabindra Dulal
Lihong Zheng
M. A. Kabir
S. McGrath
J. Medway
D. Swain
Will Swain
23
17
0
21 Oct 2022
Energy-Aware Planning-Scheduling for Autonomous Aerial Robots
Energy-Aware Planning-Scheduling for Autonomous Aerial Robots
Adam Seewald
Héctor García de Marina
H. Midtiby
U. Schultz
18
5
0
22 Jul 2022
Seeing biodiversity: perspectives in machine learning for wildlife
  conservation
Seeing biodiversity: perspectives in machine learning for wildlife conservation
D. Tuia
B. Kellenberger
Sara Beery
Blair R. Costelloe
Silvia Zuffi
...
I. Couzin
Grant Van Horn
M. Crofoot
Chuck Stewart
T. Berger-Wolf
33
392
0
25 Oct 2021
1