Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1907.03199
Cited By
What graph neural networks cannot learn: depth vs width
6 July 2019
Andreas Loukas
GNN
Re-assign community
ArXiv
PDF
HTML
Papers citing
"What graph neural networks cannot learn: depth vs width"
28 / 78 papers shown
Title
Nested Graph Neural Networks
Muhan Zhang
Pan Li
29
165
0
25 Oct 2021
From Stars to Subgraphs: Uplifting Any GNN with Local Structure Awareness
Lingxiao Zhao
Wei Jin
Leman Akoglu
Neil Shah
GNN
29
162
0
07 Oct 2021
Equivariant Subgraph Aggregation Networks
Beatrice Bevilacqua
Fabrizio Frasca
Derek Lim
Balasubramaniam Srinivasan
Chen Cai
G. Balamurugan
M. Bronstein
Haggai Maron
65
177
0
06 Oct 2021
Graph Neural Networks: Methods, Applications, and Opportunities
Lilapati Waikhom
Ripon Patgiri
GNN
42
42
0
24 Aug 2021
Bridging the Gap between Spatial and Spectral Domains: A Unified Framework for Graph Neural Networks
Zhiqian Chen
Fanglan Chen
Lei Zhang
Taoran Ji
Kaiqun Fu
Liang Zhao
Feng Chen
Lingfei Wu
Charu C. Aggarwal
Chang-Tien Lu
53
18
0
21 Jul 2021
Graph Neural Networks with Local Graph Parameters
Pablo Barceló
Floris Geerts
Juan L. Reutter
Maksimilian Ryschkov
29
65
0
12 Jun 2021
Scalars are universal: Equivariant machine learning, structured like classical physics
Soledad Villar
D. Hogg
Kate Storey-Fisher
Weichi Yao
Ben Blum-Smith
PINN
AI4CE
29
131
0
11 Jun 2021
Skeleton-based Hand-Gesture Recognition with Lightweight Graph Convolutional Networks
H. Sahbi
3DH
GNN
21
3
0
09 Apr 2021
Combinatorial optimization and reasoning with graph neural networks
Quentin Cappart
Didier Chételat
Elias Boutros Khalil
Andrea Lodi
Christopher Morris
Petar Velickovic
AI4CE
37
352
0
18 Feb 2021
Graph Convolution for Semi-Supervised Classification: Improved Linear Separability and Out-of-Distribution Generalization
Aseem Baranwal
K. Fountoulakis
Aukosh Jagannath
OODD
41
75
0
13 Feb 2021
Interpreting and Unifying Graph Neural Networks with An Optimization Framework
Meiqi Zhu
Xiao Wang
C. Shi
Houye Ji
Peng Cui
AI4CE
54
198
0
28 Jan 2021
Boost then Convolve: Gradient Boosting Meets Graph Neural Networks
Sergei Ivanov
Liudmila Prokhorenkova
AI4CE
53
52
0
21 Jan 2021
Graph Neural Networks: Taxonomy, Advances and Trends
Yu Zhou
Haixia Zheng
Xin Huang
Shufeng Hao
Dengao Li
Jumin Zhao
AI4TS
27
117
0
16 Dec 2020
Learning to Drop: Robust Graph Neural Network via Topological Denoising
Dongsheng Luo
Wei Cheng
Wenchao Yu
Bo Zong
Jingchao Ni
Haifeng Chen
Xiang Zhang
OOD
21
259
0
13 Nov 2020
Labeling Trick: A Theory of Using Graph Neural Networks for Multi-Node Representation Learning
Muhan Zhang
Pan Li
Yinglong Xia
Kai Wang
Long Jin
24
186
0
30 Oct 2020
Expressive Power of Invariant and Equivariant Graph Neural Networks
Waïss Azizian
Marc Lelarge
28
110
0
28 Jun 2020
Hierarchical Inter-Message Passing for Learning on Molecular Graphs
Matthias Fey
Jan-Gin Yuen
F. Weichert
GNN
41
86
0
22 Jun 2020
Improving Graph Neural Network Expressivity via Subgraph Isomorphism Counting
Giorgos Bouritsas
Fabrizio Frasca
S. Zafeiriou
M. Bronstein
63
426
0
16 Jun 2020
How hard is to distinguish graphs with graph neural networks?
Andreas Loukas
GNN
27
6
0
13 May 2020
Machine Learning on Graphs: A Model and Comprehensive Taxonomy
Ines Chami
Sami Abu-El-Haija
Bryan Perozzi
Christopher Ré
Kevin Patrick Murphy
24
287
0
07 May 2020
Let's Agree to Degree: Comparing Graph Convolutional Networks in the Message-Passing Framework
Floris Geerts
Filip Mazowiecki
Guillermo A. Pérez
GNN
29
38
0
06 Apr 2020
Universal Function Approximation on Graphs
Rickard Brüel-Gabrielsson
32
6
0
14 Mar 2020
Bridging the Gap between Spatial and Spectral Domains: A Survey on Graph Neural Networks
Zhiqian Chen
Fanglan Chen
Lei Zhang
Taoran Ji
Kaiqun Fu
Liang Zhao
Feng Chen
Lingfei Wu
Charu Aggarwal
Chang-Tien Lu
29
45
0
27 Feb 2020
Generalization and Representational Limits of Graph Neural Networks
Vikas K. Garg
Stefanie Jegelka
Tommi Jaakkola
GNN
26
304
0
14 Feb 2020
Can Graph Neural Networks Count Substructures?
Zhengdao Chen
Lei Chen
Soledad Villar
Joan Bruna
GNN
61
321
0
10 Feb 2020
Random Features Strengthen Graph Neural Networks
Ryoma Sato
M. Yamada
H. Kashima
GNN
AAML
13
232
0
08 Feb 2020
Graph Neural Networks: A Review of Methods and Applications
Jie Zhou
Ganqu Cui
Shengding Hu
Zhengyan Zhang
Cheng Yang
Zhiyuan Liu
Lifeng Wang
Changcheng Li
Maosong Sun
AI4CE
GNN
43
5,416
0
20 Dec 2018
Interaction Networks for Learning about Objects, Relations and Physics
Peter W. Battaglia
Razvan Pascanu
Matthew Lai
Danilo Jimenez Rezende
Koray Kavukcuoglu
AI4CE
OCL
PINN
GNN
283
1,401
0
01 Dec 2016
Previous
1
2