ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1907.02584
  4. Cited By
Interpretable Counterfactual Explanations Guided by Prototypes

Interpretable Counterfactual Explanations Guided by Prototypes

3 July 2019
A. V. Looveren
Janis Klaise
    FAtt
ArXivPDFHTML

Papers citing "Interpretable Counterfactual Explanations Guided by Prototypes"

30 / 80 papers shown
Title
A Framework and Benchmarking Study for Counterfactual Generating Methods
  on Tabular Data
A Framework and Benchmarking Study for Counterfactual Generating Methods on Tabular Data
Raphael Mazzine
David Martens
34
33
0
09 Jul 2021
Counterfactual Explanations for Arbitrary Regression Models
Counterfactual Explanations for Arbitrary Regression Models
Thomas Spooner
Danial Dervovic
Jason Long
Jon Shepard
Jiahao Chen
Daniele Magazzeni
24
26
0
29 Jun 2021
How Well do Feature Visualizations Support Causal Understanding of CNN
  Activations?
How Well do Feature Visualizations Support Causal Understanding of CNN Activations?
Roland S. Zimmermann
Judy Borowski
Robert Geirhos
Matthias Bethge
Thomas S. A. Wallis
Wieland Brendel
FAtt
44
31
0
23 Jun 2021
Exploring Counterfactual Explanations Through the Lens of Adversarial
  Examples: A Theoretical and Empirical Analysis
Exploring Counterfactual Explanations Through the Lens of Adversarial Examples: A Theoretical and Empirical Analysis
Martin Pawelczyk
Chirag Agarwal
Shalmali Joshi
Sohini Upadhyay
Himabindu Lakkaraju
AAML
32
51
0
18 Jun 2021
Causal Learning for Socially Responsible AI
Causal Learning for Socially Responsible AI
Lu Cheng
Ahmadreza Mosallanezhad
Paras Sheth
Huan Liu
71
13
0
25 Apr 2021
MEG: Generating Molecular Counterfactual Explanations for Deep Graph
  Networks
MEG: Generating Molecular Counterfactual Explanations for Deep Graph Networks
Danilo Numeroso
D. Bacciu
29
38
0
16 Apr 2021
Consequence-aware Sequential Counterfactual Generation
Consequence-aware Sequential Counterfactual Generation
Philip Naumann
Eirini Ntoutsi
OffRL
17
24
0
12 Apr 2021
Beyond Trivial Counterfactual Explanations with Diverse Valuable
  Explanations
Beyond Trivial Counterfactual Explanations with Diverse Valuable Explanations
Pau Rodríguez López
Massimo Caccia
Alexandre Lacoste
L. Zamparo
I. Laradji
Laurent Charlin
David Vazquez
AAML
37
55
0
18 Mar 2021
Counterfactuals and Causability in Explainable Artificial Intelligence:
  Theory, Algorithms, and Applications
Counterfactuals and Causability in Explainable Artificial Intelligence: Theory, Algorithms, and Applications
Yu-Liang Chou
Catarina Moreira
P. Bruza
Chun Ouyang
Joaquim A. Jorge
CML
47
176
0
07 Mar 2021
Counterfactual Explanations for Oblique Decision Trees: Exact, Efficient
  Algorithms
Counterfactual Explanations for Oblique Decision Trees: Exact, Efficient Algorithms
Miguel Á. Carreira-Perpiñán
Suryabhan Singh Hada
CML
AAML
18
33
0
01 Mar 2021
Towards Robust and Reliable Algorithmic Recourse
Towards Robust and Reliable Algorithmic Recourse
Sohini Upadhyay
Shalmali Joshi
Himabindu Lakkaraju
25
108
0
26 Feb 2021
Explaining the Black-box Smoothly- A Counterfactual Approach
Explaining the Black-box Smoothly- A Counterfactual Approach
Junyu Chen
Yong Du
Yufan He
W. Paul Segars
Ye Li
MedIm
FAtt
65
100
0
11 Jan 2021
GANterfactual - Counterfactual Explanations for Medical Non-Experts
  using Generative Adversarial Learning
GANterfactual - Counterfactual Explanations for Medical Non-Experts using Generative Adversarial Learning
Silvan Mertes
Tobias Huber
Katharina Weitz
Alexander Heimerl
Elisabeth André
GAN
AAML
MedIm
26
69
0
22 Dec 2020
Explainable AI meets Healthcare: A Study on Heart Disease Dataset
Explainable AI meets Healthcare: A Study on Heart Disease Dataset
Devam Dave
Het Naik
Smiti Singhal
Pankesh Patel
15
62
0
06 Nov 2020
Instance-based Counterfactual Explanations for Time Series
  Classification
Instance-based Counterfactual Explanations for Time Series Classification
Eoin Delaney
Derek Greene
Mark T. Keane
CML
AI4TS
19
89
0
28 Sep 2020
Counterfactual Explanation and Causal Inference in Service of Robustness
  in Robot Control
Counterfactual Explanation and Causal Inference in Service of Robustness in Robot Control
Simón C. Smith
S. Ramamoorthy
23
13
0
18 Sep 2020
Beyond Individualized Recourse: Interpretable and Interactive Summaries
  of Actionable Recourses
Beyond Individualized Recourse: Interpretable and Interactive Summaries of Actionable Recourses
Kaivalya Rawal
Himabindu Lakkaraju
27
11
0
15 Sep 2020
The Intriguing Relation Between Counterfactual Explanations and
  Adversarial Examples
The Intriguing Relation Between Counterfactual Explanations and Adversarial Examples
Timo Freiesleben
GAN
35
62
0
11 Sep 2020
Sequential Explanations with Mental Model-Based Policies
Sequential Explanations with Mental Model-Based Policies
A. Yeung
Shalmali Joshi
Joseph Jay Williams
Frank Rudzicz
FAtt
LRM
31
15
0
17 Jul 2020
Monitoring and explainability of models in production
Monitoring and explainability of models in production
Janis Klaise
A. V. Looveren
Clive Cox
G. Vacanti
Alexandru Coca
35
49
0
13 Jul 2020
Drug discovery with explainable artificial intelligence
Drug discovery with explainable artificial intelligence
José Jiménez-Luna
F. Grisoni
G. Schneider
30
625
0
01 Jul 2020
Counterfactual explanation of machine learning survival models
Counterfactual explanation of machine learning survival models
M. Kovalev
Lev V. Utkin
CML
OffRL
27
19
0
26 Jun 2020
Generative causal explanations of black-box classifiers
Generative causal explanations of black-box classifiers
Matthew R. O’Shaughnessy
Gregory H. Canal
Marissa Connor
Mark A. Davenport
Christopher Rozell
CML
30
73
0
24 Jun 2020
SCOUT: Self-aware Discriminant Counterfactual Explanations
SCOUT: Self-aware Discriminant Counterfactual Explanations
Pei Wang
Nuno Vasconcelos
FAtt
22
81
0
16 Apr 2020
Causal Interpretability for Machine Learning -- Problems, Methods and
  Evaluation
Causal Interpretability for Machine Learning -- Problems, Methods and Evaluation
Raha Moraffah
Mansooreh Karami
Ruocheng Guo
A. Raglin
Huan Liu
CML
ELM
XAI
27
213
0
09 Mar 2020
Convex Density Constraints for Computing Plausible Counterfactual
  Explanations
Convex Density Constraints for Computing Plausible Counterfactual Explanations
André Artelt
Barbara Hammer
19
47
0
12 Feb 2020
Explaining Data-Driven Decisions made by AI Systems: The Counterfactual
  Approach
Explaining Data-Driven Decisions made by AI Systems: The Counterfactual Approach
Carlos Fernandez
F. Provost
Xintian Han
CML
11
69
0
21 Jan 2020
Preserving Causal Constraints in Counterfactual Explanations for Machine
  Learning Classifiers
Preserving Causal Constraints in Counterfactual Explanations for Machine Learning Classifiers
Divyat Mahajan
Chenhao Tan
Amit Sharma
OOD
CML
22
206
0
06 Dec 2019
An explanation method for Siamese neural networks
An explanation method for Siamese neural networks
Lev V. Utkin
M. Kovalev
E. Kasimov
14
14
0
18 Nov 2019
On the computation of counterfactual explanations -- A survey
On the computation of counterfactual explanations -- A survey
André Artelt
Barbara Hammer
LRM
24
50
0
15 Nov 2019
Previous
12