Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1907.02260
Cited By
On Explaining Machine Learning Models by Evolving Crucial and Compact Features
4 July 2019
M. Virgolin
Tanja Alderliesten
Peter A. N. Bosman
Re-assign community
ArXiv
PDF
HTML
Papers citing
"On Explaining Machine Learning Models by Evolving Crucial and Compact Features"
9 / 9 papers shown
Title
Evolutionary Computation and Explainable AI: A Roadmap to Transparent Intelligent Systems
Ryan Zhou
Jaume Bacardit
Alexander Brownlee
Stefano Cagnoni
Martin Fyvie
Giovanni Iacca
John Mccall
Niki van Stein
David Walker
Ting-Kuei Hu
39
0
0
12 Jun 2024
MultiFIX: An XAI-friendly feature inducing approach to building models from multimodal data
Mafalda Malafaia
Thalea Schlender
Peter A. N. Bosman
Tanja Alderliesten
29
0
0
19 Feb 2024
Evolutionary approaches to explainable machine learning
Ryan Zhou
Ting-Kuei Hu
35
7
0
23 Jun 2023
Less is More: A Call to Focus on Simpler Models in Genetic Programming for Interpretable Machine Learning
M. Virgolin
Eric Medvet
Tanja Alderliesten
Peter A. N. Bosman
29
6
0
05 Apr 2022
On genetic programming representations and fitness functions for interpretable dimensionality reduction
Thomas Uriot
M. Virgolin
Tanja Alderliesten
Peter A. N. Bosman
4
9
0
01 Mar 2022
Model Learning with Personalized Interpretability Estimation (ML-PIE)
M. Virgolin
A. D. Lorenzo
Francesca Randone
Eric Medvet
M. Wahde
24
29
0
13 Apr 2021
Genetic Programming is Naturally Suited to Evolve Bagging Ensembles
M. Virgolin
20
0
0
13 Sep 2020
Learning a Formula of Interpretability to Learn Interpretable Formulas
M. Virgolin
A. D. Lorenzo
Eric Medvet
Francesca Randone
22
33
0
23 Apr 2020
ranger: A Fast Implementation of Random Forests for High Dimensional Data in C++ and R
Marvin N. Wright
A. Ziegler
93
2,732
0
18 Aug 2015
1