Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1907.01849
Cited By
Distributed Learning in Non-Convex Environments -- Part II: Polynomial Escape from Saddle-Points
3 July 2019
Stefan Vlaski
Ali H. Sayed
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Distributed Learning in Non-Convex Environments -- Part II: Polynomial Escape from Saddle-Points"
26 / 26 papers shown
Title
Deep-Relative-Trust-Based Diffusion for Decentralized Deep Learning
Muyun Li
Aaron Fainman
Stefan Vlaski
38
0
0
06 Jan 2025
Quantization Avoids Saddle Points in Distributed Optimization
Yanan Bo
Yongqiang Wang
MQ
16
2
0
15 Mar 2024
Exact Subspace Diffusion for Decentralized Multitask Learning
Shreya Wadehra
Roula Nassif
Stefan Vlaski
21
1
0
14 Apr 2023
Decentralized Adversarial Training over Graphs
Ying Cao
Elsa Rizk
Stefan Vlaski
Ali H. Sayed
AAML
43
1
0
23 Mar 2023
Multi-Agent Adversarial Training Using Diffusion Learning
Ying Cao
Elsa Rizk
Stefan Vlaski
Ali H. Sayed
DiffM
40
4
0
03 Mar 2023
Networked Signal and Information Processing
Stefan Vlaski
S. Kar
Ali H. Sayed
José M. F. Moura
49
16
0
25 Oct 2022
Robust and Efficient Aggregation for Distributed Learning
Stefan Vlaski
Christian A. Schroth
Michael Muma
A. Zoubir
OOD
FedML
22
4
0
01 Apr 2022
Distributed Adaptive Learning Under Communication Constraints
Marco Carpentiero
Vincenzo Matta
Ali H. Sayed
29
17
0
03 Dec 2021
A Unified and Refined Convergence Analysis for Non-Convex Decentralized Learning
Sulaiman A. Alghunaim
Kun Yuan
28
57
0
19 Oct 2021
A Hybrid Variance-Reduced Method for Decentralized Stochastic Non-Convex Optimization
Ran Xin
U. Khan
S. Kar
12
39
0
12 Feb 2021
Second-Order Guarantees in Federated Learning
Stefan Vlaski
Elsa Rizk
Ali H. Sayed
FedML
20
7
0
02 Dec 2020
Graph-Homomorphic Perturbations for Private Decentralized Learning
Stefan Vlaski
Ali H. Sayed
FedML
53
7
0
23 Oct 2020
Fast decentralized non-convex finite-sum optimization with recursive variance reduction
Ran Xin
U. Khan
S. Kar
13
43
0
17 Aug 2020
Distributed Gradient Flow: Nonsmoothness, Nonconvexity, and Saddle Point Evasion
Brian Swenson
Ryan W. Murray
H. Vincent Poor
S. Kar
12
16
0
12 Aug 2020
An improved convergence analysis for decentralized online stochastic non-convex optimization
Ran Xin
U. Khan
S. Kar
18
100
0
10 Aug 2020
Distributed Training of Graph Convolutional Networks
Simone Scardapane
Indro Spinelli
P. Lorenzo
GNN
BDL
43
26
0
13 Jul 2020
Distributed Stochastic Nonconvex Optimization and Learning based on Successive Convex Approximation
P. Lorenzo
Simone Scardapane
43
2
0
30 Apr 2020
Second-Order Guarantees in Centralized, Federated and Decentralized Nonconvex Optimization
Stefan Vlaski
Ali H. Sayed
23
5
0
31 Mar 2020
Distributed Learning in the Non-Convex World: From Batch to Streaming Data, and Beyond
Tsung-Hui Chang
Mingyi Hong
Hoi-To Wai
Xinwei Zhang
Songtao Lu
GNN
20
13
0
14 Jan 2020
Linear Speedup in Saddle-Point Escape for Decentralized Non-Convex Optimization
Stefan Vlaski
Ali H. Sayed
25
2
0
30 Oct 2019
Improving the Sample and Communication Complexity for Decentralized Non-Convex Optimization: A Joint Gradient Estimation and Tracking Approach
Haoran Sun
Songtao Lu
Mingyi Hong
24
37
0
13 Oct 2019
Variance-Reduced Decentralized Stochastic Optimization with Gradient Tracking -- Part II: GT-SVRG
Ran Xin
U. Khan
S. Kar
9
8
0
08 Oct 2019
Second-Order Guarantees of Stochastic Gradient Descent in Non-Convex Optimization
Stefan Vlaski
Ali H. Sayed
ODL
26
21
0
19 Aug 2019
Distributed Learning in Non-Convex Environments -- Part I: Agreement at a Linear Rate
Stefan Vlaski
Ali H. Sayed
12
69
0
03 Jul 2019
Second-order Guarantees of Distributed Gradient Algorithms
Amir Daneshmand
G. Scutari
Vyacheslav Kungurtsev
14
59
0
23 Sep 2018
Distributed Non-Convex First-Order Optimization and Information Processing: Lower Complexity Bounds and Rate Optimal Algorithms
Haoran Sun
Mingyi Hong
13
52
0
08 Apr 2018
1