ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1907.01160
  4. Cited By
WHAM!: Extending Speech Separation to Noisy Environments

WHAM!: Extending Speech Separation to Noisy Environments

2 July 2019
Gordon Wichern
J. Antognini
Michael Flynn
Licheng Richard Zhu
E. McQuinn
Dwight Crow
Ethan Manilow
Jonathan Le Roux
ArXivPDFHTML

Papers citing "WHAM!: Extending Speech Separation to Noisy Environments"

10 / 60 papers shown
Title
Configurable Privacy-Preserving Automatic Speech Recognition
Configurable Privacy-Preserving Automatic Speech Recognition
Ranya Aloufi
Hamed Haddadi
David E. Boyle
25
10
0
01 Apr 2021
Single channel voice separation for unknown number of speakers under
  reverberant and noisy settings
Single channel voice separation for unknown number of speakers under reverberant and noisy settings
Shlomo E. Chazan
Lior Wolf
Eliya Nachmani
Yossi Adi
29
29
0
04 Nov 2020
DESNet: A Multi-channel Network for Simultaneous Speech Dereverberation,
  Enhancement and Separation
DESNet: A Multi-channel Network for Simultaneous Speech Dereverberation, Enhancement and Separation
Yihui Fu
Jian Wu
Yanxin Hu
Mengtao Xing
Lei Xie
20
23
0
04 Nov 2020
Asteroid: the PyTorch-based audio source separation toolkit for
  researchers
Asteroid: the PyTorch-based audio source separation toolkit for researchers
Manuel Pariente
Samuele Cornell
Joris Cosentino
S. Sivasankaran
Efthymios Tzinis
...
Juan M. Martín-Donas
David Ditter
Ariel Frank
Antoine Deleforge
Emmanuel Vincent
27
151
0
08 May 2020
Voice Separation with an Unknown Number of Multiple Speakers
Voice Separation with an Unknown Number of Multiple Speakers
Eliya Nachmani
Yossi Adi
Lior Wolf
20
175
0
29 Feb 2020
Wavesplit: End-to-End Speech Separation by Speaker Clustering
Wavesplit: End-to-End Speech Separation by Speaker Clustering
Neil Zeghidour
David Grangier
VLM
27
261
0
20 Feb 2020
SMS-WSJ: Database, performance measures, and baseline recipe for
  multi-channel source separation and recognition
SMS-WSJ: Database, performance measures, and baseline recipe for multi-channel source separation and recognition
Lukas Drude
Jens Heitkaemper
Christoph Boeddeker
Reinhold Haeb-Umbach
6
72
0
30 Oct 2019
Filterbank design for end-to-end speech separation
Filterbank design for end-to-end speech separation
Manuel Pariente
Samuele Cornell
Antoine Deleforge
Emmanuel Vincent
26
69
0
23 Oct 2019
WHAMR!: Noisy and Reverberant Single-Channel Speech Separation
WHAMR!: Noisy and Reverberant Single-Channel Speech Separation
Matthew Maciejewski
Gordon Wichern
E. McQuinn
Jonathan Le Roux
16
180
0
22 Oct 2019
End-to-End Speech Separation with Unfolded Iterative Phase
  Reconstruction
End-to-End Speech Separation with Unfolded Iterative Phase Reconstruction
Zhong-Qiu Wang
Jonathan Le Roux
DeLiang Wang
J. Hershey
96
123
0
26 Apr 2018
Previous
12