ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1906.12281
  4. Cited By
Efficient stochastic optimisation by unadjusted Langevin Monte Carlo.
  Application to maximum marginal likelihood and empirical Bayesian estimation

Efficient stochastic optimisation by unadjusted Langevin Monte Carlo. Application to maximum marginal likelihood and empirical Bayesian estimation

28 June 2019
Valentin De Bortoli
Alain Durmus
Marcelo Pereyra
A. F. Vidal
ArXivPDFHTML

Papers citing "Efficient stochastic optimisation by unadjusted Langevin Monte Carlo. Application to maximum marginal likelihood and empirical Bayesian estimation"

21 / 21 papers shown
Title
Proximal Interacting Particle Langevin Algorithms
Proximal Interacting Particle Langevin Algorithms
Paula Cordero Encinar
F. R. Crucinio
O. Deniz Akyildiz
61
5
0
20 Jun 2024
Interacting Particle Langevin Algorithm for Maximum Marginal Likelihood Estimation
Interacting Particle Langevin Algorithm for Maximum Marginal Likelihood Estimation
Ö. Deniz Akyildiz
F. R. Crucinio
Mark Girolami
Tim Johnston
Sotirios Sabanis
70
13
0
23 Mar 2023
Maximum likelihood estimation of regularisation parameters in
  high-dimensional inverse problems: an empirical Bayesian approach. Part II:
  Theoretical Analysis
Maximum likelihood estimation of regularisation parameters in high-dimensional inverse problems: an empirical Bayesian approach. Part II: Theoretical Analysis
Valentin De Bortoli
Alain Durmus
A. F. Vidal
Marcelo Pereyra
52
20
0
13 Aug 2020
Maximum likelihood estimation of regularisation parameters in
  high-dimensional inverse problems: an empirical Bayesian approach. Part I:
  Methodology and Experiments
Maximum likelihood estimation of regularisation parameters in high-dimensional inverse problems: an empirical Bayesian approach. Part I: Methodology and Experiments
A. F. Vidal
Valentin De Bortoli
Marcelo Pereyra
Alain Durmus
59
7
0
26 Nov 2019
A Dynamical Systems Perspective on Nesterov Acceleration
A Dynamical Systems Perspective on Nesterov Acceleration
Michael Muehlebach
Michael I. Jordan
51
120
0
17 May 2019
Convergence of diffusions and their discretizations: from continuous to
  discrete processes and back
Convergence of diffusions and their discretizations: from continuous to discrete processes and back
Valentin De Bortoli
Alain Durmus
22
21
0
22 Apr 2019
Is There an Analog of Nesterov Acceleration for MCMC?
Is There an Analog of Nesterov Acceleration for MCMC?
Yian Ma
Niladri Chatterji
Xiang Cheng
Nicolas Flammarion
Peter L. Bartlett
Michael I. Jordan
BDL
49
78
0
04 Feb 2019
Non-asymptotic Analysis of Biased Stochastic Approximation Scheme
Non-asymptotic Analysis of Biased Stochastic Approximation Scheme
Belhal Karimi
B. Miasojedow
Eric Moulines
Hoi-To Wai
42
90
0
02 Feb 2019
On sampling from a log-concave density using kinetic Langevin diffusions
On sampling from a log-concave density using kinetic Langevin diffusions
A. Dalalyan
L. Riou-Durand
63
154
0
24 Jul 2018
Sharp convergence rates for Langevin dynamics in the nonconvex setting
Sharp convergence rates for Langevin dynamics in the nonconvex setting
Xiang Cheng
Niladri S. Chatterji
Yasin Abbasi-Yadkori
Peter L. Bartlett
Michael I. Jordan
45
166
0
04 May 2018
Beyond Log-concavity: Provable Guarantees for Sampling Multi-modal
  Distributions using Simulated Tempering Langevin Monte Carlo
Beyond Log-concavity: Provable Guarantees for Sampling Multi-modal Distributions using Simulated Tempering Langevin Monte Carlo
Rong Ge
Holden Lee
Andrej Risteski
64
54
0
07 Oct 2017
On the convergence of Hamiltonian Monte Carlo
On the convergence of Hamiltonian Monte Carlo
Alain Durmus
Eric Moulines
E. Saksman
63
70
0
29 Apr 2017
Further and stronger analogy between sampling and optimization: Langevin
  Monte Carlo and gradient descent
Further and stronger analogy between sampling and optimization: Langevin Monte Carlo and gradient descent
A. Dalalyan
BDL
40
174
0
16 Apr 2017
Efficient Bayesian computation by proximal Markov chain Monte Carlo:
  when Langevin meets Moreau
Efficient Bayesian computation by proximal Markov chain Monte Carlo: when Langevin meets Moreau
Alain Durmus
Eric Moulines
Marcelo Pereyra
51
176
0
22 Dec 2016
Non-asymptotic convergence analysis for the Unadjusted Langevin
  Algorithm
Non-asymptotic convergence analysis for the Unadjusted Langevin Algorithm
Alain Durmus
Eric Moulines
61
410
0
17 Jul 2015
Theoretical guarantees for approximate sampling from smooth and
  log-concave densities
Theoretical guarantees for approximate sampling from smooth and log-concave densities
A. Dalalyan
66
514
0
23 Dec 2014
Consistency and fluctuations for stochastic gradient Langevin dynamics
Consistency and fluctuations for stochastic gradient Langevin dynamics
Yee Whye Teh
Alexandre Hoang Thiery
Sebastian J. Vollmer
58
231
0
01 Sep 2014
On perturbed proximal gradient algorithms
On perturbed proximal gradient algorithms
Yves Atchadé
G. Fort
Eric Moulines
59
99
0
11 Feb 2014
Bayesian Posterior Sampling via Stochastic Gradient Fisher Scoring
Bayesian Posterior Sampling via Stochastic Gradient Fisher Scoring
S. Ahn
Anoop Korattikara Balan
Max Welling
72
305
0
27 Jun 2012
Convergence of adaptive and interacting Markov chain Monte Carlo
  algorithms
Convergence of adaptive and interacting Markov chain Monte Carlo algorithms
G. Fort
Eric Moulines
P. Priouret
54
100
0
14 Mar 2012
Computational methods for Bayesian model choice
Computational methods for Bayesian model choice
Christian P. Robert
Darren Wraith
86
74
0
29 Jul 2009
1