Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1906.11828
Cited By
Integration of adversarial autoencoders with residual dense convolutional networks for estimation of non-Gaussian hydraulic conductivities
26 June 2019
S. Mo
N. Zabaras
Xiaoqing Shi
Jichun Wu
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Integration of adversarial autoencoders with residual dense convolutional networks for estimation of non-Gaussian hydraulic conductivities"
9 / 9 papers shown
Title
Uncertainty quantification of two-phase flow in porous media via coupled-TgNN surrogate model
Jun Yu Li
Dongxiao Zhang
Tianhao He
Q. Zheng
AI4CE
27
6
0
28 May 2022
Use of Multifidelity Training Data and Transfer Learning for Efficient Construction of Subsurface Flow Surrogate Models
Su Jiang
L. Durlofsky
AI4CE
22
29
0
23 Apr 2022
Deep Learning for Simultaneous Inference of Hydraulic and Transport Properties
Zitong Zhou
N. Zabaras
D. Tartakovsky
26
16
0
24 Oct 2021
Applications of physics-informed scientific machine learning in subsurface science: A survey
A. Sun
H. Yoon
C. Shih
Zhi Zhong
AI4CE
29
9
0
10 Apr 2021
3D CNN-PCA: A Deep-Learning-Based Parameterization for Complex Geomodels
Yimin Liu
L. Durlofsky
AI4CE
24
60
0
16 Jul 2020
Data-Space Inversion Using a Recurrent Autoencoder for Time-Series Parameterization
Su Jiang
L. Durlofsky
27
18
0
30 Apr 2020
Multiphase flow prediction with deep neural networks
Gege Wen
Meng Tang
S. Benson
16
6
0
21 Oct 2019
A deep-learning-based surrogate model for data assimilation in dynamic subsurface flow problems
Meng Tang
Yimin Liu
L. Durlofsky
AI4CE
32
257
0
16 Aug 2019
Real-Time Single Image and Video Super-Resolution Using an Efficient Sub-Pixel Convolutional Neural Network
Wenzhe Shi
Jose Caballero
Ferenc Huszár
J. Totz
Andrew P. Aitken
Rob Bishop
Daniel Rueckert
Zehan Wang
SupR
207
5,176
0
16 Sep 2016
1